CingenAI / app.py
mgbam's picture
Update app.py
a4d9a11 verified
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling or ANTIALIAS. MoviePy effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG)
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None
try:
from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported.")
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.")
class VisualEngine:
DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20
VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white'
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
try: os.makedirs(self.output_dir, exist_ok=True); logger.info(f"VE output dir: {os.path.abspath(self.output_dir)}")
# Test writability immediately (optional, but good for early failure detection)
# test_file_path = os.path.join(self.output_dir, ".ve_write_test.txt")
# with open(test_file_path, "w") as f_test: f_test.write("VE write test OK")
# os.remove(test_file_path); logger.info(f"Write test to '{self.output_dir}' OK.")
except Exception as e_mkdir: logger.critical(f"CRITICAL: Failed to create output dir '{os.path.abspath(self.output_dir)}': {e_mkdir}", exc_info=True); raise OSError(f"VE failed to init output dir '{self.output_dir}'.") from e_mkdir
self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None)
self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL; self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT
if self.resolved_font_path_pil:
try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT)
except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.")
else: logger.warning("Preferred Pillow font not found. Default.")
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id # Set initial voice ID
logger.info(f"VE __init__: 11L Voice ID initially set to: {self.elevenlabs_voice_id}")
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings_obj = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False
logger.info("VisualEngine __init__ sequence complete.")
def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
# <<< CORRECTED METHOD SIGNATURE AND LOGIC >>>
def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key_value
if voice_id_from_secret:
self.elevenlabs_voice_id = voice_id_from_secret
logger.info(f"ElevenLabs Voice ID explicitly set/updated to: {self.elevenlabs_voice_id} via set_elevenlabs_api_key.")
# If voice_id_from_secret is None, self.elevenlabs_voice_id (set in __init__ or by user via UI) remains.
if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value)
self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance)
logger.info(f"ElevenLabs Client service status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
except Exception as e_11l_setkey_init:
logger.error(f"ElevenLabs client initialization error during set_elevenlabs_api_key: {e_11l_setkey_init}. Service Disabled.", exc_info=True)
self.USE_ELEVENLABS = False
self.elevenlabs_client_instance = None
else:
self.USE_ELEVENLABS = False
self.elevenlabs_client_instance = None
if not api_key_value: logger.info(f"ElevenLabs Service Disabled (API key not provided to set_elevenlabs_api_key).")
elif not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient): logger.info(f"ElevenLabs Service Disabled (SDK issue).")
def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
def set_runway_api_key(self, api_key_value):
self.runway_api_key = api_key_value
if api_key_value:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
if not self.runway_ml_sdk_client_instance:
try:
original_env_secret_val = os.getenv("RUNWAYML_API_SECRET")
if not original_env_secret_val: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_key.")
if not original_env_secret_val: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
except Exception as e_runway_setkey_init_local: logger.error(f"RunwayML Client init in set_key fail: {e_runway_setkey_init_local}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None
else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
else: logger.warning("RunwayML SDK not imported. Disabled."); self.USE_RUNWAYML = False
else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Disabled (no key).")
# --- Helper Methods (_image_to_data_uri, _map_resolution_to_runway_ratio, etc. - Ensure these are fully corrected from previous iterations) ---
def _image_to_data_uri(self, image_path_in):
try:
mime_type_val, _ = mimetypes.guess_type(image_path_in)
if not mime_type_val: ext = os.path.splitext(image_path_in)[1].lower(); mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".webp": "image/webp"}; mime_type_val = mime_map.get(ext, "application/octet-stream");
if mime_type_val == "application/octet-stream": logger.warning(f"Unknown MIME for {image_path_in}, using {mime_type_val}.")
with open(image_path_in, "rb") as img_file_handle: img_binary_data = img_file_handle.read()
encoded_b64_str = base64.b64encode(img_binary_data).decode('utf-8')
final_data_uri = f"data:{mime_type_val};base64,{encoded_b64_str}"; logger.debug(f"Data URI for {os.path.basename(image_path_in)} (MIME:{mime_type_val}): {final_data_uri[:100]}..."); return final_data_uri
except FileNotFoundError: logger.error(f"Img not found {image_path_in} for data URI."); return None
except Exception as e_to_data_uri: logger.error(f"Error converting {image_path_in} to data URI:{e_to_data_uri}", exc_info=True); return None
def _map_resolution_to_runway_ratio(self, width_in, height_in):
ratio_string = f"{width_in}:{height_in}"; supported_ratios = ["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
if ratio_string in supported_ratios: return ratio_string
logger.warning(f"Res {ratio_string} not in Gen-4 list. Default 1280:720 for Runway.");return "1280:720"
def _get_text_dimensions(self, text_str, font_pil_obj):
def_h = getattr(font_pil_obj, 'size', self.active_font_size_pil);
if not text_str: return 0, def_h
try:
if hasattr(font_pil_obj,'getbbox'): box = font_pil_obj.getbbox(text_str); w_val=box[2]-box[0]; h_val=box[3]-box[1]; return w_val, h_val if h_val > 0 else def_h
elif hasattr(font_pil_obj,'getsize'): w_val,h_val=font_pil_obj.getsize(text_str); return w_val, h_val if h_val > 0 else def_h
else: return int(len(text_str)*def_h*0.6), int(def_h*1.2)
except Exception as e_get_dim: logger.warning(f"Error in _get_text_dimensions: {e_get_dim}"); return int(len(text_str)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2)
def _create_placeholder_image_content(self,text_desc_val, filename_val, size_val=None):
if size_val is None: size_val = self.video_frame_size
placeholder_img = Image.new('RGB', size_val, color=(20, 20, 40)); placeholder_draw = ImageDraw.Draw(placeholder_img); ph_padding = 25
ph_max_w = size_val[0] - (2 * ph_padding); ph_lines = []
if not text_desc_val: text_desc_val = "(Placeholder Image)"
ph_words = text_desc_val.split(); ph_current_line = ""
for ph_word_idx, ph_word in enumerate(ph_words):
ph_prosp_add = ph_word + (" " if ph_word_idx < len(ph_words) - 1 else "")
ph_test_line = ph_current_line + ph_prosp_add
ph_curr_w, _ = self._get_text_dimensions(ph_test_line, self.active_font_pil)
if ph_curr_w == 0 and ph_test_line.strip(): ph_curr_w = len(ph_test_line) * (self.active_font_size_pil * 0.6)
if ph_curr_w <= ph_max_w: ph_current_line = ph_test_line
else:
if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
ph_current_line = ph_prosp_add
if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
if not ph_lines and text_desc_val:
ph_avg_char_w, _ = self._get_text_dimensions("W", self.active_font_pil); ph_avg_char_w = ph_avg_char_w or (self.active_font_size_pil * 0.6)
ph_chars_line = int(ph_max_w / ph_avg_char_w) if ph_avg_char_w > 0 else 20
ph_lines.append(text_desc_val[:ph_chars_line] + ("..." if len(text_desc_val) > ph_chars_line else ""))
elif not ph_lines: ph_lines.append("(Placeholder Error)")
_, ph_single_h = self._get_text_dimensions("Ay", self.active_font_pil); ph_single_h = ph_single_h if ph_single_h > 0 else self.active_font_size_pil + 2
ph_max_l = min(len(ph_lines), (size_val[1] - (2 * ph_padding)) // (ph_single_h + 2)) if ph_single_h > 0 else 1; ph_max_l = max(1, ph_max_l)
ph_y_pos = ph_padding + (size_val[1] - (2 * ph_padding) - ph_max_l * (ph_single_h + 2)) / 2.0
for ph_i_line in range(ph_max_l):
ph_line_txt = ph_lines[ph_i_line]; ph_line_w, _ = self._get_text_dimensions(ph_line_txt, self.active_font_pil)
if ph_line_w == 0 and ph_line_txt.strip(): ph_line_w = len(ph_line_txt) * (self.active_font_size_pil * 0.6)
ph_x_pos = (size_val[0] - ph_line_w) / 2.0
try: placeholder_draw.text((ph_x_pos, ph_y_pos), ph_line_txt, font=self.active_font_pil, fill=(200, 200, 180))
except Exception as e_ph_draw: logger.error(f"Pillow d.text error: {e_ph_draw} for '{ph_line_txt}'")
ph_y_pos += ph_single_h + 2
if ph_i_line == 6 and ph_max_l > 7:
try: placeholder_draw.text((ph_x_pos, ph_y_pos), "...", font=self.active_font_pil, fill=(200, 200, 180))
except Exception as e_ph_elip: logger.error(f"Pillow d.text ellipsis error: {e_ph_elip}"); break
ph_filepath = os.path.join(self.output_dir, filename_val)
try: placeholder_img.save(ph_filepath); return ph_filepath
except Exception as e_ph_save: logger.error(f"Saving placeholder image '{ph_filepath}' error: {e_ph_save}", exc_info=True); return None
def _search_pexels_image(self, query_str_px, output_fn_base_px):
if not self.USE_PEXELS or not self.pexels_api_key: return None
http_headers_px = {"Authorization": self.pexels_api_key}
http_params_px = {"query": query_str_px, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name_for_pexels_img, _ = os.path.splitext(output_fn_base_px)
pexels_filename_output = base_name_for_pexels_img + f"_pexels_{random.randint(1000,9999)}.jpg"
filepath_for_pexels_img = os.path.join(self.output_dir, pexels_filename_output)
try:
logger.info(f"Pexels: Searching for '{query_str_px}'")
effective_query_for_pexels = " ".join(query_str_px.split()[:5])
http_params_px["query"] = effective_query_for_pexels
response_from_pexels = requests.get("https://api.pexels.com/v1/search", headers=http_headers_px, params=http_params_px, timeout=20)
response_from_pexels.raise_for_status()
data_from_pexels = response_from_pexels.json()
if data_from_pexels.get("photos") and len(data_from_pexels["photos"]) > 0:
photo_details_item_px = data_from_pexels["photos"][0]
photo_url_item_px = photo_details_item_px.get("src", {}).get("large2x")
if not photo_url_item_px: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query_for_pexels}'. Details: {photo_details_item_px}"); return None
image_response_get_px = requests.get(photo_url_item_px, timeout=60); image_response_get_px.raise_for_status()
img_pil_data_from_pexels = Image.open(io.BytesIO(image_response_get_px.content))
if img_pil_data_from_pexels.mode != 'RGB': img_pil_data_from_pexels = img_pil_data_from_pexels.convert('RGB')
img_pil_data_from_pexels.save(filepath_for_pexels_img); logger.info(f"Pexels: Image saved to {filepath_for_pexels_img}"); return filepath_for_pexels_img
else: logger.info(f"Pexels: No photos for '{effective_query_for_pexels}'."); return None
except requests.exceptions.RequestException as e_req_px_loop: logger.error(f"Pexels: RequestException for '{query_str_px}': {e_req_px_loop}", exc_info=False); return None
except Exception as e_px_gen_loop: logger.error(f"Pexels: General error for '{query_str_px}': {e_px_gen_loop}", exc_info=True); return None
def _generate_video_clip_with_runwayml(self, motion_prompt_rwy, input_img_path_rwy, scene_id_base_fn_rwy, duration_s_rwy=5):
if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None
if not input_img_path_rwy or not os.path.exists(input_img_path_rwy): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path_rwy}"); return None
img_data_uri_rwy = self._image_to_data_uri(input_img_path_rwy)
if not img_data_uri_rwy: return None
rwy_actual_dur = 10 if duration_s_rwy >= 8 else 5; rwy_actual_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1])
rwy_fn_base, _ = os.path.splitext(scene_id_base_fn_rwy); rwy_output_fn = rwy_fn_base + f"_runway_gen4_d{rwy_actual_dur}s.mp4"; rwy_output_fp = os.path.join(self.output_dir,rwy_output_fn)
logger.info(f"Runway Gen-4 task: motion='{motion_prompt_rwy[:70]}...', img='{os.path.basename(input_img_path_rwy)}', dur={rwy_actual_dur}s, ratio='{rwy_actual_ratio}'")
try:
rwy_submitted_task = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri_rwy,prompt_text=motion_prompt_rwy,duration=rwy_actual_dur,ratio=rwy_actual_ratio)
rwy_task_id_val = rwy_submitted_task.id; logger.info(f"Runway task ID: {rwy_task_id_val}. Polling...")
poll_interval_val=10;max_poll_attempts=36;poll_start_timestamp=time.time()
while time.time()-poll_start_timestamp < max_poll_attempts*poll_interval_val:
time.sleep(poll_interval_val);rwy_task_details_obj=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id_val)
logger.info(f"Runway task {rwy_task_id_val} status: {rwy_task_details_obj.status}")
if rwy_task_details_obj.status=='SUCCEEDED':
rwy_video_output_url=getattr(getattr(rwy_task_details_obj,'output',None),'url',None) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'url')and rwy_task_details_obj.artifacts[0].url) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'download_url')and rwy_task_details_obj.artifacts[0].download_url)
if not rwy_video_output_url:logger.error(f"Runway task {rwy_task_id_val} SUCCEEDED, no output URL. Details:{vars(rwy_task_details_obj)if hasattr(rwy_task_details_obj,'__dict__')else rwy_task_details_obj}");return None
logger.info(f"Runway task {rwy_task_id_val} SUCCEEDED. Downloading: {rwy_video_output_url}")
runway_video_response=requests.get(rwy_video_output_url,stream=True,timeout=300);runway_video_response.raise_for_status()
with open(rwy_output_fp,'wb')as f_out_vid:
for data_chunk_vid in runway_video_response.iter_content(chunk_size=8192): f_out_vid.write(data_chunk_vid)
logger.info(f"Runway Gen-4 video saved: {rwy_output_fp}");return rwy_output_fp
elif rwy_task_details_obj.status in['FAILED','ABORTED','ERROR']:
runway_error_detail=getattr(rwy_task_details_obj,'error_message',None)or getattr(getattr(rwy_task_details_obj,'output',None),'error',"Unknown Runway error.")
logger.error(f"Runway task {rwy_task_id_val} status:{rwy_task_details_obj.status}. Error:{runway_error_detail}");return None
logger.warning(f"Runway task {rwy_task_id_val} timed out.");return None
except AttributeError as e_rwy_sdk_attr: logger.error(f"RunwayML SDK AttrError:{e_rwy_sdk_attr}. SDK methods changed?",exc_info=True);return None
except Exception as e_rwy_general: logger.error(f"Runway Gen-4 API error:{e_rwy_general}",exc_info=True);return None
def _create_placeholder_video_content(self, text_desc_ph_vid, filename_ph_vid, duration_ph_vid=4, size_ph_vid=None):
if size_ph_vid is None: size_ph_vid = self.video_frame_size
filepath_ph_vid_out = os.path.join(self.output_dir, filename_ph_vid)
text_clip_object_ph = None
try:
text_clip_object_ph = TextClip(text_desc_ph_vid, fontsize=50, color='white', font=self.video_overlay_font,
bg_color='black', size=size_ph_vid, method='caption').set_duration(duration_ph_vid)
text_clip_object_ph.write_videofile(filepath_ph_vid_out, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video created: {filepath_ph_vid_out}")
return filepath_ph_vid_out
except Exception as e_placeholder_video_creation:
logger.error(f"Failed to create generic placeholder video '{filepath_ph_vid_out}': {e_placeholder_video_creation}", exc_info=True)
return None
finally:
if text_clip_object_ph and hasattr(text_clip_object_ph, 'close'):
try: text_clip_object_ph.close()
except Exception as e_close_placeholder_clip: logger.warning(f"Ignoring error closing placeholder TextClip: {e_close_placeholder_clip}")
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data_dictionary, scene_identifier_fn_base,
generate_as_video_clip_flag=False, runway_target_duration_val=5):
base_name_current_asset, _ = os.path.splitext(scene_identifier_fn_base)
asset_info_return_obj = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
path_to_input_image_for_runway = None
filename_for_base_image_output = base_name_current_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png")
filepath_for_base_image_output = os.path.join(self.output_dir, filename_for_base_image_output)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries_dalle, current_attempt_dalle = 2,0;
for idx_dalle_attempt in range(max_retries_dalle):
current_attempt_dalle = idx_dalle_attempt + 1
try:
logger.info(f"Att {current_attempt_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_client = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_response = oai_client.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_image_url = oai_response.data[0].url; oai_revised_prompt = getattr(oai_response.data[0],'revised_prompt',None);
if oai_revised_prompt: logger.info(f"DALL-E revised: {oai_revised_prompt[:70]}...")
oai_image_get_response = requests.get(oai_image_url,timeout=120); oai_image_get_response.raise_for_status(); oai_pil_image = Image.open(io.BytesIO(oai_image_get_response.content));
if oai_pil_image.mode!='RGB': oai_pil_image=oai_pil_image.convert('RGB')
oai_pil_image.save(filepath_for_base_image_output); logger.info(f"DALL-E base img saved: {filepath_for_base_image_output}"); path_to_input_image_for_runway=filepath_for_base_image_output; asset_info_return_obj={'path':filepath_for_base_image_output,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_revised_prompt}; break
except openai.RateLimitError as e_dalle_rl: logger.warning(f"OpenAI RateLimit Att {current_attempt_dalle}:{e_dalle_rl}.Retry...");time.sleep(5*current_attempt_dalle);asset_info_return_obj['error_message']=str(e_dalle_rl)
except openai.APIError as e_dalle_api: logger.error(f"OpenAI APIError Att {current_attempt_dalle}:{e_dalle_api}");asset_info_return_obj['error_message']=str(e_dalle_api);break
except requests.exceptions.RequestException as e_dalle_req: logger.error(f"Requests Err DALL-E Att {current_attempt_dalle}:{e_dalle_req}");asset_info_return_obj['error_message']=str(e_dalle_req);break
except Exception as e_dalle_gen: logger.error(f"General DALL-E Err Att {current_attempt_dalle}:{e_dalle_gen}",exc_info=True);asset_info_return_obj['error_message']=str(e_dalle_gen);break
if asset_info_return_obj['error']: logger.warning(f"DALL-E failed after {current_attempt_dalle} attempts for base img.")
if asset_info_return_obj['error'] and self.USE_PEXELS:
logger.info("Trying Pexels for base img.");pexels_query_text_val = scene_data_dictionary.get('pexels_search_query_감독',f"{scene_data_dictionary.get('emotional_beat','')} {scene_data_dictionary.get('setting_description','')}");pexels_path_result = self._search_pexels_image(pexels_query_text_val, filename_for_base_image_output);
if pexels_path_result:path_to_input_image_for_runway=pexels_path_result;asset_info_return_obj={'path':pexels_path_result,'type':'image','error':False,'prompt_used':f"Pexels:{pexels_query_text_val}"}
else:current_error_msg_pexels=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_pexels+" Pexels failed for base.").strip()
if asset_info_return_obj['error']:
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");placeholder_prompt_text_val =asset_info_return_obj.get('prompt_used',image_generation_prompt_text);placeholder_path_result=self._create_placeholder_image_content(f"[Base Placeholder]{placeholder_prompt_text_val[:70]}...",filename_for_base_image_output);
if placeholder_path_result:path_to_input_image_for_runway=placeholder_path_result;asset_info_return_obj={'path':placeholder_path_result,'type':'image','error':False,'prompt_used':placeholder_prompt_text_val}
else:current_error_msg_ph=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_ph+" Base placeholder failed.").strip()
if generate_as_video_clip_flag:
if not path_to_input_image_for_runway:logger.error("RunwayML video: base img failed.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_return_obj['type']='none';return asset_info_return_obj
if self.USE_RUNWAYML:
runway_generated_video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_to_input_image_for_runway,base_name_current_asset,runway_target_duration_val)
if runway_generated_video_path and os.path.exists(runway_generated_video_path):asset_info_return_obj={'path':runway_generated_video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_to_input_image_for_runway}
else:logger.warning(f"RunwayML video failed for {base_name_current_asset}. Fallback to base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
return asset_info_return_obj
def generate_narration_audio(self, narration_text, output_fn="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not narration_text: logger.info("11L conditions not met. Skip audio."); return None
narration_fp = os.path.join(self.output_dir, output_fn)
try:
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): \"{narration_text[:70]}...\"")
stream_method = None
if hasattr(self.elevenlabs_client_instance,'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech,'stream'): stream_method=self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client_instance,'generate_stream'): stream_method=self.elevenlabs_client_instance.generate_stream; logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client_instance,'generate'):
logger.info("Using 11L .generate() (non-streaming).")
voice_p = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings_obj) if Voice and self.elevenlabs_voice_settings_obj else str(self.elevenlabs_voice_id)
audio_b = self.elevenlabs_client_instance.generate(text=narration_text,voice=voice_p,model="eleven_multilingual_v2")
with open(narration_fp,"wb") as f_audio: f_audio.write(audio_b); logger.info(f"11L audio (non-stream): {narration_fp}"); return narration_fp
else: logger.error("No recognized 11L audio method."); return None # This path should ideally not be reached if client initialized
# This block only executes if a streaming method was found
if stream_method:
voice_stream_params={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings_obj:
if hasattr(self.elevenlabs_voice_settings_obj,'model_dump'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.model_dump()
elif hasattr(self.elevenlabs_voice_settings_obj,'dict'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.dict()
else: voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj
audio_iter = stream_method(text=narration_text,model_id="eleven_multilingual_v2",**voice_stream_params)
with open(narration_fp,"wb") as f_audio_stream:
for chunk_item in audio_iter:
if chunk_item: f_audio_stream.write(chunk_item)
logger.info(f"11L audio (stream): {narration_fp}"); return narration_fp
else: # Should be caught by the first check, but as a safeguard
logger.error("Logical error: No streaming method assigned but non-streaming path not taken."); return None
except AttributeError as e_11l_attr: logger.error(f"11L SDK AttrError: {e_11l_attr}. SDK/methods changed?", exc_info=True); return None
except Exception as e_11l_gen: logger.error(f"11L audio gen error: {e_11l_gen}", exc_info=True); return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")
for i_asset, asset_info_item_loop in enumerate(asset_data_list):
path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")
if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
active_scene_clip = None
try:
if type_of_asset == 'image':
pil_img_original = Image.open(path_of_asset); logger.debug(f"S{num_of_scene} (0-Load): Original. Mode:{pil_img_original.mode}, Size:{pil_img_original.size}"); pil_img_original.save(os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png"))
img_rgba_intermediate = pil_img_original.convert('RGBA') if pil_img_original.mode != 'RGBA' else pil_img_original.copy().convert('RGBA'); logger.debug(f"S{num_of_scene} (1-ToRGBA): Mode:{img_rgba_intermediate.mode}, Size:{img_rgba_intermediate.size}"); img_rgba_intermediate.save(os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png"))
thumbnailed_img_rgba = img_rgba_intermediate.copy(); resample_filter_pil = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img_rgba.thumbnail(self.video_frame_size, resample_filter_pil); logger.debug(f"S{num_of_scene} (2-Thumbnail): Mode:{thumbnailed_img_rgba.mode}, Size:{thumbnailed_img_rgba.size}"); thumbnailed_img_rgba.save(os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png"))
canvas_for_compositing_rgba = Image.new('RGBA', self.video_frame_size, (0,0,0,0)); pos_x_paste = (self.video_frame_size[0] - thumbnailed_img_rgba.width) // 2; pos_y_paste = (self.video_frame_size[1] - thumbnailed_img_rgba.height) // 2; canvas_for_compositing_rgba.paste(thumbnailed_img_rgba, (pos_x_paste, pos_y_paste), thumbnailed_img_rgba); logger.debug(f"S{num_of_scene} (3-PasteOnRGBA): Mode:{canvas_for_compositing_rgba.mode}, Size:{canvas_for_compositing_rgba.size}"); canvas_for_compositing_rgba.save(os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png"))
final_rgb_image_for_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0));
if canvas_for_compositing_rgba.mode == 'RGBA': final_rgb_image_for_pil.paste(canvas_for_compositing_rgba, mask=canvas_for_compositing_rgba.split()[3])
else: final_rgb_image_for_pil.paste(canvas_for_compositing_rgba)
logger.debug(f"S{num_of_scene} (4-ToRGB): Final RGB. Mode:{final_rgb_image_for_pil.mode}, Size:{final_rgb_image_for_pil.size}")
debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); final_rgb_image_for_pil.save(debug_path_img_pre_numpy); logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} to {debug_path_img_pre_numpy}")
numpy_frame_arr = np.array(final_rgb_image_for_pil, dtype=np.uint8)
if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr = np.ascontiguousarray(numpy_frame_arr, dtype=np.uint8)
logger.debug(f"S{num_of_scene} (5-NumPy): Final NumPy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, Flags:{numpy_frame_arr.flags}")
if numpy_frame_arr.size == 0 or numpy_frame_arr.ndim != 3 or numpy_frame_arr.shape[2] != 3: logger.error(f"S{num_of_scene}: Invalid NumPy shape/size ({numpy_frame_arr.shape}). Skipping."); continue
base_image_clip_mvpy = ImageClip(numpy_frame_arr, transparent=False, ismask=False).set_duration(duration_for_scene)
logger.debug(f"S{num_of_scene} (6-ImageClip): Base ImageClip. Duration: {base_image_clip_mvpy.duration}")
debug_path_moviepy_frame = os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png")
try: # Corrected try-except for save_frame
save_frame_time = min(0.1, base_image_clip_mvpy.duration / 2 if base_image_clip_mvpy.duration > 0 else 0.1)
base_image_clip_mvpy.save_frame(debug_path_moviepy_frame, t=save_frame_time)
logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip S{num_of_scene} to {debug_path_moviepy_frame}")
except Exception as e_save_mvpy_frame:
logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_mvpy_frame}", exc_info=True)
fx_image_clip_mvpy = base_image_clip_mvpy
try: # Ken Burns try block
scale_end_kb_val = random.uniform(1.03, 1.08)
if duration_for_scene > 0: fx_image_clip_mvpy = base_image_clip_mvpy.fx(vfx.resize, lambda t_val: 1 + (scale_end_kb_val - 1) * (t_val / duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene} (8-KenBurns): Ken Burns applied.")
else: logger.warning(f"S{num_of_scene}: Duration zero, skipping Ken Burns.")
except Exception as e_kb_fx_loop: # Except for Ken Burns
logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx_loop}", exc_info=False)
active_scene_clip = fx_image_clip_mvpy
elif type_of_asset == 'video':
source_video_clip_obj=None
try:
logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}")
source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
temp_video_clip_obj_loop=source_video_clip_obj
if source_video_clip_obj.duration!=duration_for_scene:
if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
else:
if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
logger.debug(f"S{num_of_scene}: Video asset processed. Final duration: {active_scene_clip.duration:.2f}s")
except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
finally:
if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):
try: source_video_clip_obj.close()
except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}")
else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue
if active_scene_clip and action_in_key: # Text Overlay
try:
dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else (active_scene_clip.duration if active_scene_clip.duration > 0 else 0)
start_text_overlay_val=0.25 if active_scene_clip.duration > 0.5 else 0
if dur_text_overlay_val > 0:
text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True)
active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True)
logger.debug(f"S{num_of_scene}: Text overlay composited.")
else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.")
except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True)
if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.")
except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True)
finally:
if active_scene_clip and active_scene_clip not in processed_moviepy_clips_list and hasattr(active_scene_clip,'close'): # Only close if not added to list
try: active_scene_clip.close(); logger.debug(f"S{num_of_scene}: Closed active_scene_clip in asset loop finally block because it wasn't added.")
except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}")
if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None
transition_duration_val=0.75
try:
logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic.");
if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose")
elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0]
if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None
logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s")
if transition_duration_val > 0 and final_video_output_clip.duration > 0:
if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
logger.debug("Applied fade in/out effects to final composite clip.")
if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0:
try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.")
except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True)
elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.")
if final_video_output_clip and final_video_output_clip.duration > 0:
final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)")
num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2
final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str
else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None
except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
# Only attempt to close clips that are actual MoviePy clip instances and haven't been closed
# The processed_moviepy_clips_list contains the clips *before* concatenation/final effects.
# The final_video_output_clip is the result of these operations.
# Narration clip is separate.
# Close clips from the list first
for clip_obj in processed_moviepy_clips_list:
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_cl_proc: logger.warning(f"Ignoring error closing a processed clip ({type(clip_obj).__name__}): {e_cl_proc}")
# Close narration clip if it exists
if narration_audio_clip_mvpy and hasattr(narration_audio_clip_mvpy, 'close'):
try: narration_audio_clip_mvpy.close()
except Exception as e_cl_narr: logger.warning(f"Ignoring error closing narration clip: {e_cl_narr}")
# Close the final composite clip if it exists and is different from single processed clip
if final_video_output_clip and hasattr(final_video_output_clip, 'close'):
# Avoid double-closing if it was the only clip in processed_moviepy_clips_list
if not (len(processed_moviepy_clips_list) == 1 and final_video_output_clip is processed_moviepy_clips_list[0]):
try: final_video_output_clip.close()
except Exception as e_cl_final: logger.warning(f"Ignoring error closing final composite clip: {e_cl_final}")