|
|
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
import base64 |
|
import mimetypes |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
|
|
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
|
|
try: |
|
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, 'ANTIALIAS'): |
|
print("WARNING: Pillow version lacks common Resampling or ANTIALIAS. MoviePy effects might fail.") |
|
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.") |
|
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.") |
|
|
|
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None |
|
try: |
|
from runwayml import RunwayML as ImportedRunwayMLAPIClientClass |
|
RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True |
|
logger.info("RunwayML SDK imported.") |
|
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.") |
|
|
|
class VisualEngine: |
|
DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20 |
|
VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white' |
|
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' |
|
|
|
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): |
|
self.output_dir = output_dir |
|
try: os.makedirs(self.output_dir, exist_ok=True); logger.info(f"VE output dir: {os.path.abspath(self.output_dir)}") |
|
|
|
|
|
|
|
|
|
except Exception as e_mkdir: logger.critical(f"CRITICAL: Failed to create output dir '{os.path.abspath(self.output_dir)}': {e_mkdir}", exc_info=True); raise OSError(f"VE failed to init output dir '{self.output_dir}'.") from e_mkdir |
|
self.font_filename_pil_preference = "DejaVuSans-Bold.ttf" |
|
font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"] |
|
self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None) |
|
self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL; self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT |
|
if self.resolved_font_path_pil: |
|
try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT) |
|
except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.") |
|
else: logger.warning("Preferred Pillow font not found. Default.") |
|
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None |
|
self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
logger.info(f"VE __init__: 11L Voice ID initially set to: {self.elevenlabs_voice_id}") |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True) |
|
else: self.elevenlabs_voice_settings_obj = None |
|
self.pexels_api_key = None; self.USE_PEXELS = False |
|
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"): |
|
try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.") |
|
except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False |
|
logger.info("VisualEngine __init__ sequence complete.") |
|
|
|
def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}") |
|
|
|
|
|
def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None): |
|
self.elevenlabs_api_key = api_key_value |
|
|
|
if voice_id_from_secret: |
|
self.elevenlabs_voice_id = voice_id_from_secret |
|
logger.info(f"ElevenLabs Voice ID explicitly set/updated to: {self.elevenlabs_voice_id} via set_elevenlabs_api_key.") |
|
|
|
|
|
if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: |
|
self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value) |
|
self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance) |
|
logger.info(f"ElevenLabs Client service status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})") |
|
except Exception as e_11l_setkey_init: |
|
logger.error(f"ElevenLabs client initialization error during set_elevenlabs_api_key: {e_11l_setkey_init}. Service Disabled.", exc_info=True) |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client_instance = None |
|
else: |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client_instance = None |
|
if not api_key_value: logger.info(f"ElevenLabs Service Disabled (API key not provided to set_elevenlabs_api_key).") |
|
elif not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient): logger.info(f"ElevenLabs Service Disabled (SDK issue).") |
|
|
|
def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}") |
|
|
|
def set_runway_api_key(self, api_key_value): |
|
self.runway_api_key = api_key_value |
|
if api_key_value: |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass: |
|
if not self.runway_ml_sdk_client_instance: |
|
try: |
|
original_env_secret_val = os.getenv("RUNWAYML_API_SECRET") |
|
if not original_env_secret_val: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temp set RUNWAYML_API_SECRET for SDK.") |
|
self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_key.") |
|
if not original_env_secret_val: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.") |
|
except Exception as e_runway_setkey_init_local: logger.error(f"RunwayML Client init in set_key fail: {e_runway_setkey_init_local}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None |
|
else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.") |
|
else: logger.warning("RunwayML SDK not imported. Disabled."); self.USE_RUNWAYML = False |
|
else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Disabled (no key).") |
|
|
|
|
|
def _image_to_data_uri(self, image_path_in): |
|
try: |
|
mime_type_val, _ = mimetypes.guess_type(image_path_in) |
|
if not mime_type_val: ext = os.path.splitext(image_path_in)[1].lower(); mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".webp": "image/webp"}; mime_type_val = mime_map.get(ext, "application/octet-stream"); |
|
if mime_type_val == "application/octet-stream": logger.warning(f"Unknown MIME for {image_path_in}, using {mime_type_val}.") |
|
with open(image_path_in, "rb") as img_file_handle: img_binary_data = img_file_handle.read() |
|
encoded_b64_str = base64.b64encode(img_binary_data).decode('utf-8') |
|
final_data_uri = f"data:{mime_type_val};base64,{encoded_b64_str}"; logger.debug(f"Data URI for {os.path.basename(image_path_in)} (MIME:{mime_type_val}): {final_data_uri[:100]}..."); return final_data_uri |
|
except FileNotFoundError: logger.error(f"Img not found {image_path_in} for data URI."); return None |
|
except Exception as e_to_data_uri: logger.error(f"Error converting {image_path_in} to data URI:{e_to_data_uri}", exc_info=True); return None |
|
|
|
def _map_resolution_to_runway_ratio(self, width_in, height_in): |
|
ratio_string = f"{width_in}:{height_in}"; supported_ratios = ["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"]; |
|
if ratio_string in supported_ratios: return ratio_string |
|
logger.warning(f"Res {ratio_string} not in Gen-4 list. Default 1280:720 for Runway.");return "1280:720" |
|
|
|
def _get_text_dimensions(self, text_str, font_pil_obj): |
|
def_h = getattr(font_pil_obj, 'size', self.active_font_size_pil); |
|
if not text_str: return 0, def_h |
|
try: |
|
if hasattr(font_pil_obj,'getbbox'): box = font_pil_obj.getbbox(text_str); w_val=box[2]-box[0]; h_val=box[3]-box[1]; return w_val, h_val if h_val > 0 else def_h |
|
elif hasattr(font_pil_obj,'getsize'): w_val,h_val=font_pil_obj.getsize(text_str); return w_val, h_val if h_val > 0 else def_h |
|
else: return int(len(text_str)*def_h*0.6), int(def_h*1.2) |
|
except Exception as e_get_dim: logger.warning(f"Error in _get_text_dimensions: {e_get_dim}"); return int(len(text_str)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2) |
|
|
|
def _create_placeholder_image_content(self,text_desc_val, filename_val, size_val=None): |
|
if size_val is None: size_val = self.video_frame_size |
|
placeholder_img = Image.new('RGB', size_val, color=(20, 20, 40)); placeholder_draw = ImageDraw.Draw(placeholder_img); ph_padding = 25 |
|
ph_max_w = size_val[0] - (2 * ph_padding); ph_lines = [] |
|
if not text_desc_val: text_desc_val = "(Placeholder Image)" |
|
ph_words = text_desc_val.split(); ph_current_line = "" |
|
for ph_word_idx, ph_word in enumerate(ph_words): |
|
ph_prosp_add = ph_word + (" " if ph_word_idx < len(ph_words) - 1 else "") |
|
ph_test_line = ph_current_line + ph_prosp_add |
|
ph_curr_w, _ = self._get_text_dimensions(ph_test_line, self.active_font_pil) |
|
if ph_curr_w == 0 and ph_test_line.strip(): ph_curr_w = len(ph_test_line) * (self.active_font_size_pil * 0.6) |
|
if ph_curr_w <= ph_max_w: ph_current_line = ph_test_line |
|
else: |
|
if ph_current_line.strip(): ph_lines.append(ph_current_line.strip()) |
|
ph_current_line = ph_prosp_add |
|
if ph_current_line.strip(): ph_lines.append(ph_current_line.strip()) |
|
if not ph_lines and text_desc_val: |
|
ph_avg_char_w, _ = self._get_text_dimensions("W", self.active_font_pil); ph_avg_char_w = ph_avg_char_w or (self.active_font_size_pil * 0.6) |
|
ph_chars_line = int(ph_max_w / ph_avg_char_w) if ph_avg_char_w > 0 else 20 |
|
ph_lines.append(text_desc_val[:ph_chars_line] + ("..." if len(text_desc_val) > ph_chars_line else "")) |
|
elif not ph_lines: ph_lines.append("(Placeholder Error)") |
|
_, ph_single_h = self._get_text_dimensions("Ay", self.active_font_pil); ph_single_h = ph_single_h if ph_single_h > 0 else self.active_font_size_pil + 2 |
|
ph_max_l = min(len(ph_lines), (size_val[1] - (2 * ph_padding)) // (ph_single_h + 2)) if ph_single_h > 0 else 1; ph_max_l = max(1, ph_max_l) |
|
ph_y_pos = ph_padding + (size_val[1] - (2 * ph_padding) - ph_max_l * (ph_single_h + 2)) / 2.0 |
|
for ph_i_line in range(ph_max_l): |
|
ph_line_txt = ph_lines[ph_i_line]; ph_line_w, _ = self._get_text_dimensions(ph_line_txt, self.active_font_pil) |
|
if ph_line_w == 0 and ph_line_txt.strip(): ph_line_w = len(ph_line_txt) * (self.active_font_size_pil * 0.6) |
|
ph_x_pos = (size_val[0] - ph_line_w) / 2.0 |
|
try: placeholder_draw.text((ph_x_pos, ph_y_pos), ph_line_txt, font=self.active_font_pil, fill=(200, 200, 180)) |
|
except Exception as e_ph_draw: logger.error(f"Pillow d.text error: {e_ph_draw} for '{ph_line_txt}'") |
|
ph_y_pos += ph_single_h + 2 |
|
if ph_i_line == 6 and ph_max_l > 7: |
|
try: placeholder_draw.text((ph_x_pos, ph_y_pos), "...", font=self.active_font_pil, fill=(200, 200, 180)) |
|
except Exception as e_ph_elip: logger.error(f"Pillow d.text ellipsis error: {e_ph_elip}"); break |
|
ph_filepath = os.path.join(self.output_dir, filename_val) |
|
try: placeholder_img.save(ph_filepath); return ph_filepath |
|
except Exception as e_ph_save: logger.error(f"Saving placeholder image '{ph_filepath}' error: {e_ph_save}", exc_info=True); return None |
|
|
|
def _search_pexels_image(self, query_str_px, output_fn_base_px): |
|
if not self.USE_PEXELS or not self.pexels_api_key: return None |
|
http_headers_px = {"Authorization": self.pexels_api_key} |
|
http_params_px = {"query": query_str_px, "per_page": 1, "orientation": "landscape", "size": "large2x"} |
|
base_name_for_pexels_img, _ = os.path.splitext(output_fn_base_px) |
|
pexels_filename_output = base_name_for_pexels_img + f"_pexels_{random.randint(1000,9999)}.jpg" |
|
filepath_for_pexels_img = os.path.join(self.output_dir, pexels_filename_output) |
|
try: |
|
logger.info(f"Pexels: Searching for '{query_str_px}'") |
|
effective_query_for_pexels = " ".join(query_str_px.split()[:5]) |
|
http_params_px["query"] = effective_query_for_pexels |
|
response_from_pexels = requests.get("https://api.pexels.com/v1/search", headers=http_headers_px, params=http_params_px, timeout=20) |
|
response_from_pexels.raise_for_status() |
|
data_from_pexels = response_from_pexels.json() |
|
if data_from_pexels.get("photos") and len(data_from_pexels["photos"]) > 0: |
|
photo_details_item_px = data_from_pexels["photos"][0] |
|
photo_url_item_px = photo_details_item_px.get("src", {}).get("large2x") |
|
if not photo_url_item_px: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query_for_pexels}'. Details: {photo_details_item_px}"); return None |
|
image_response_get_px = requests.get(photo_url_item_px, timeout=60); image_response_get_px.raise_for_status() |
|
img_pil_data_from_pexels = Image.open(io.BytesIO(image_response_get_px.content)) |
|
if img_pil_data_from_pexels.mode != 'RGB': img_pil_data_from_pexels = img_pil_data_from_pexels.convert('RGB') |
|
img_pil_data_from_pexels.save(filepath_for_pexels_img); logger.info(f"Pexels: Image saved to {filepath_for_pexels_img}"); return filepath_for_pexels_img |
|
else: logger.info(f"Pexels: No photos for '{effective_query_for_pexels}'."); return None |
|
except requests.exceptions.RequestException as e_req_px_loop: logger.error(f"Pexels: RequestException for '{query_str_px}': {e_req_px_loop}", exc_info=False); return None |
|
except Exception as e_px_gen_loop: logger.error(f"Pexels: General error for '{query_str_px}': {e_px_gen_loop}", exc_info=True); return None |
|
|
|
def _generate_video_clip_with_runwayml(self, motion_prompt_rwy, input_img_path_rwy, scene_id_base_fn_rwy, duration_s_rwy=5): |
|
if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None |
|
if not input_img_path_rwy or not os.path.exists(input_img_path_rwy): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path_rwy}"); return None |
|
img_data_uri_rwy = self._image_to_data_uri(input_img_path_rwy) |
|
if not img_data_uri_rwy: return None |
|
rwy_actual_dur = 10 if duration_s_rwy >= 8 else 5; rwy_actual_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1]) |
|
rwy_fn_base, _ = os.path.splitext(scene_id_base_fn_rwy); rwy_output_fn = rwy_fn_base + f"_runway_gen4_d{rwy_actual_dur}s.mp4"; rwy_output_fp = os.path.join(self.output_dir,rwy_output_fn) |
|
logger.info(f"Runway Gen-4 task: motion='{motion_prompt_rwy[:70]}...', img='{os.path.basename(input_img_path_rwy)}', dur={rwy_actual_dur}s, ratio='{rwy_actual_ratio}'") |
|
try: |
|
rwy_submitted_task = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri_rwy,prompt_text=motion_prompt_rwy,duration=rwy_actual_dur,ratio=rwy_actual_ratio) |
|
rwy_task_id_val = rwy_submitted_task.id; logger.info(f"Runway task ID: {rwy_task_id_val}. Polling...") |
|
poll_interval_val=10;max_poll_attempts=36;poll_start_timestamp=time.time() |
|
while time.time()-poll_start_timestamp < max_poll_attempts*poll_interval_val: |
|
time.sleep(poll_interval_val);rwy_task_details_obj=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id_val) |
|
logger.info(f"Runway task {rwy_task_id_val} status: {rwy_task_details_obj.status}") |
|
if rwy_task_details_obj.status=='SUCCEEDED': |
|
rwy_video_output_url=getattr(getattr(rwy_task_details_obj,'output',None),'url',None) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'url')and rwy_task_details_obj.artifacts[0].url) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'download_url')and rwy_task_details_obj.artifacts[0].download_url) |
|
if not rwy_video_output_url:logger.error(f"Runway task {rwy_task_id_val} SUCCEEDED, no output URL. Details:{vars(rwy_task_details_obj)if hasattr(rwy_task_details_obj,'__dict__')else rwy_task_details_obj}");return None |
|
logger.info(f"Runway task {rwy_task_id_val} SUCCEEDED. Downloading: {rwy_video_output_url}") |
|
runway_video_response=requests.get(rwy_video_output_url,stream=True,timeout=300);runway_video_response.raise_for_status() |
|
with open(rwy_output_fp,'wb')as f_out_vid: |
|
for data_chunk_vid in runway_video_response.iter_content(chunk_size=8192): f_out_vid.write(data_chunk_vid) |
|
logger.info(f"Runway Gen-4 video saved: {rwy_output_fp}");return rwy_output_fp |
|
elif rwy_task_details_obj.status in['FAILED','ABORTED','ERROR']: |
|
runway_error_detail=getattr(rwy_task_details_obj,'error_message',None)or getattr(getattr(rwy_task_details_obj,'output',None),'error',"Unknown Runway error.") |
|
logger.error(f"Runway task {rwy_task_id_val} status:{rwy_task_details_obj.status}. Error:{runway_error_detail}");return None |
|
logger.warning(f"Runway task {rwy_task_id_val} timed out.");return None |
|
except AttributeError as e_rwy_sdk_attr: logger.error(f"RunwayML SDK AttrError:{e_rwy_sdk_attr}. SDK methods changed?",exc_info=True);return None |
|
except Exception as e_rwy_general: logger.error(f"Runway Gen-4 API error:{e_rwy_general}",exc_info=True);return None |
|
|
|
def _create_placeholder_video_content(self, text_desc_ph_vid, filename_ph_vid, duration_ph_vid=4, size_ph_vid=None): |
|
if size_ph_vid is None: size_ph_vid = self.video_frame_size |
|
filepath_ph_vid_out = os.path.join(self.output_dir, filename_ph_vid) |
|
text_clip_object_ph = None |
|
try: |
|
text_clip_object_ph = TextClip(text_desc_ph_vid, fontsize=50, color='white', font=self.video_overlay_font, |
|
bg_color='black', size=size_ph_vid, method='caption').set_duration(duration_ph_vid) |
|
text_clip_object_ph.write_videofile(filepath_ph_vid_out, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2) |
|
logger.info(f"Generic placeholder video created: {filepath_ph_vid_out}") |
|
return filepath_ph_vid_out |
|
except Exception as e_placeholder_video_creation: |
|
logger.error(f"Failed to create generic placeholder video '{filepath_ph_vid_out}': {e_placeholder_video_creation}", exc_info=True) |
|
return None |
|
finally: |
|
if text_clip_object_ph and hasattr(text_clip_object_ph, 'close'): |
|
try: text_clip_object_ph.close() |
|
except Exception as e_close_placeholder_clip: logger.warning(f"Ignoring error closing placeholder TextClip: {e_close_placeholder_clip}") |
|
|
|
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video, |
|
scene_data_dictionary, scene_identifier_fn_base, |
|
generate_as_video_clip_flag=False, runway_target_duration_val=5): |
|
base_name_current_asset, _ = os.path.splitext(scene_identifier_fn_base) |
|
asset_info_return_obj = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'} |
|
path_to_input_image_for_runway = None |
|
filename_for_base_image_output = base_name_current_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png") |
|
filepath_for_base_image_output = os.path.join(self.output_dir, filename_for_base_image_output) |
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
max_retries_dalle, current_attempt_dalle = 2,0; |
|
for idx_dalle_attempt in range(max_retries_dalle): |
|
current_attempt_dalle = idx_dalle_attempt + 1 |
|
try: |
|
logger.info(f"Att {current_attempt_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_client = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_response = oai_client.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_image_url = oai_response.data[0].url; oai_revised_prompt = getattr(oai_response.data[0],'revised_prompt',None); |
|
if oai_revised_prompt: logger.info(f"DALL-E revised: {oai_revised_prompt[:70]}...") |
|
oai_image_get_response = requests.get(oai_image_url,timeout=120); oai_image_get_response.raise_for_status(); oai_pil_image = Image.open(io.BytesIO(oai_image_get_response.content)); |
|
if oai_pil_image.mode!='RGB': oai_pil_image=oai_pil_image.convert('RGB') |
|
oai_pil_image.save(filepath_for_base_image_output); logger.info(f"DALL-E base img saved: {filepath_for_base_image_output}"); path_to_input_image_for_runway=filepath_for_base_image_output; asset_info_return_obj={'path':filepath_for_base_image_output,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_revised_prompt}; break |
|
except openai.RateLimitError as e_dalle_rl: logger.warning(f"OpenAI RateLimit Att {current_attempt_dalle}:{e_dalle_rl}.Retry...");time.sleep(5*current_attempt_dalle);asset_info_return_obj['error_message']=str(e_dalle_rl) |
|
except openai.APIError as e_dalle_api: logger.error(f"OpenAI APIError Att {current_attempt_dalle}:{e_dalle_api}");asset_info_return_obj['error_message']=str(e_dalle_api);break |
|
except requests.exceptions.RequestException as e_dalle_req: logger.error(f"Requests Err DALL-E Att {current_attempt_dalle}:{e_dalle_req}");asset_info_return_obj['error_message']=str(e_dalle_req);break |
|
except Exception as e_dalle_gen: logger.error(f"General DALL-E Err Att {current_attempt_dalle}:{e_dalle_gen}",exc_info=True);asset_info_return_obj['error_message']=str(e_dalle_gen);break |
|
if asset_info_return_obj['error']: logger.warning(f"DALL-E failed after {current_attempt_dalle} attempts for base img.") |
|
if asset_info_return_obj['error'] and self.USE_PEXELS: |
|
logger.info("Trying Pexels for base img.");pexels_query_text_val = scene_data_dictionary.get('pexels_search_query_감독',f"{scene_data_dictionary.get('emotional_beat','')} {scene_data_dictionary.get('setting_description','')}");pexels_path_result = self._search_pexels_image(pexels_query_text_val, filename_for_base_image_output); |
|
if pexels_path_result:path_to_input_image_for_runway=pexels_path_result;asset_info_return_obj={'path':pexels_path_result,'type':'image','error':False,'prompt_used':f"Pexels:{pexels_query_text_val}"} |
|
else:current_error_msg_pexels=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_pexels+" Pexels failed for base.").strip() |
|
if asset_info_return_obj['error']: |
|
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");placeholder_prompt_text_val =asset_info_return_obj.get('prompt_used',image_generation_prompt_text);placeholder_path_result=self._create_placeholder_image_content(f"[Base Placeholder]{placeholder_prompt_text_val[:70]}...",filename_for_base_image_output); |
|
if placeholder_path_result:path_to_input_image_for_runway=placeholder_path_result;asset_info_return_obj={'path':placeholder_path_result,'type':'image','error':False,'prompt_used':placeholder_prompt_text_val} |
|
else:current_error_msg_ph=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_ph+" Base placeholder failed.").strip() |
|
if generate_as_video_clip_flag: |
|
if not path_to_input_image_for_runway:logger.error("RunwayML video: base img failed.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_return_obj['type']='none';return asset_info_return_obj |
|
if self.USE_RUNWAYML: |
|
runway_generated_video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_to_input_image_for_runway,base_name_current_asset,runway_target_duration_val) |
|
if runway_generated_video_path and os.path.exists(runway_generated_video_path):asset_info_return_obj={'path':runway_generated_video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_to_input_image_for_runway} |
|
else:logger.warning(f"RunwayML video failed for {base_name_current_asset}. Fallback to base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text |
|
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text |
|
return asset_info_return_obj |
|
|
|
def generate_narration_audio(self, narration_text, output_fn="narration_overall.mp3"): |
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not narration_text: logger.info("11L conditions not met. Skip audio."); return None |
|
narration_fp = os.path.join(self.output_dir, output_fn) |
|
try: |
|
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): \"{narration_text[:70]}...\"") |
|
stream_method = None |
|
if hasattr(self.elevenlabs_client_instance,'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech,'stream'): stream_method=self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()") |
|
elif hasattr(self.elevenlabs_client_instance,'generate_stream'): stream_method=self.elevenlabs_client_instance.generate_stream; logger.info("Using 11L .generate_stream()") |
|
elif hasattr(self.elevenlabs_client_instance,'generate'): |
|
logger.info("Using 11L .generate() (non-streaming).") |
|
voice_p = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings_obj) if Voice and self.elevenlabs_voice_settings_obj else str(self.elevenlabs_voice_id) |
|
audio_b = self.elevenlabs_client_instance.generate(text=narration_text,voice=voice_p,model="eleven_multilingual_v2") |
|
with open(narration_fp,"wb") as f_audio: f_audio.write(audio_b); logger.info(f"11L audio (non-stream): {narration_fp}"); return narration_fp |
|
else: logger.error("No recognized 11L audio method."); return None |
|
|
|
|
|
if stream_method: |
|
voice_stream_params={"voice_id":str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings_obj: |
|
if hasattr(self.elevenlabs_voice_settings_obj,'model_dump'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings_obj,'dict'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.dict() |
|
else: voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj |
|
audio_iter = stream_method(text=narration_text,model_id="eleven_multilingual_v2",**voice_stream_params) |
|
with open(narration_fp,"wb") as f_audio_stream: |
|
for chunk_item in audio_iter: |
|
if chunk_item: f_audio_stream.write(chunk_item) |
|
logger.info(f"11L audio (stream): {narration_fp}"); return narration_fp |
|
else: |
|
logger.error("Logical error: No streaming method assigned but non-streaming path not taken."); return None |
|
except AttributeError as e_11l_attr: logger.error(f"11L SDK AttrError: {e_11l_attr}. SDK/methods changed?", exc_info=True); return None |
|
except Exception as e_11l_gen: logger.error(f"11L audio gen error: {e_11l_gen}", exc_info=True); return None |
|
|
|
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24): |
|
if not asset_data_list: logger.warning("No assets for animatic."); return None |
|
processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.") |
|
|
|
for i_asset, asset_info_item_loop in enumerate(asset_data_list): |
|
path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5) |
|
num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '') |
|
logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s") |
|
|
|
if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue |
|
if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue |
|
|
|
active_scene_clip = None |
|
try: |
|
if type_of_asset == 'image': |
|
pil_img_original = Image.open(path_of_asset); logger.debug(f"S{num_of_scene} (0-Load): Original. Mode:{pil_img_original.mode}, Size:{pil_img_original.size}"); pil_img_original.save(os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png")) |
|
img_rgba_intermediate = pil_img_original.convert('RGBA') if pil_img_original.mode != 'RGBA' else pil_img_original.copy().convert('RGBA'); logger.debug(f"S{num_of_scene} (1-ToRGBA): Mode:{img_rgba_intermediate.mode}, Size:{img_rgba_intermediate.size}"); img_rgba_intermediate.save(os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png")) |
|
thumbnailed_img_rgba = img_rgba_intermediate.copy(); resample_filter_pil = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img_rgba.thumbnail(self.video_frame_size, resample_filter_pil); logger.debug(f"S{num_of_scene} (2-Thumbnail): Mode:{thumbnailed_img_rgba.mode}, Size:{thumbnailed_img_rgba.size}"); thumbnailed_img_rgba.save(os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png")) |
|
canvas_for_compositing_rgba = Image.new('RGBA', self.video_frame_size, (0,0,0,0)); pos_x_paste = (self.video_frame_size[0] - thumbnailed_img_rgba.width) // 2; pos_y_paste = (self.video_frame_size[1] - thumbnailed_img_rgba.height) // 2; canvas_for_compositing_rgba.paste(thumbnailed_img_rgba, (pos_x_paste, pos_y_paste), thumbnailed_img_rgba); logger.debug(f"S{num_of_scene} (3-PasteOnRGBA): Mode:{canvas_for_compositing_rgba.mode}, Size:{canvas_for_compositing_rgba.size}"); canvas_for_compositing_rgba.save(os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png")) |
|
final_rgb_image_for_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)); |
|
if canvas_for_compositing_rgba.mode == 'RGBA': final_rgb_image_for_pil.paste(canvas_for_compositing_rgba, mask=canvas_for_compositing_rgba.split()[3]) |
|
else: final_rgb_image_for_pil.paste(canvas_for_compositing_rgba) |
|
logger.debug(f"S{num_of_scene} (4-ToRGB): Final RGB. Mode:{final_rgb_image_for_pil.mode}, Size:{final_rgb_image_for_pil.size}") |
|
debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); final_rgb_image_for_pil.save(debug_path_img_pre_numpy); logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} to {debug_path_img_pre_numpy}") |
|
|
|
numpy_frame_arr = np.array(final_rgb_image_for_pil, dtype=np.uint8) |
|
if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr = np.ascontiguousarray(numpy_frame_arr, dtype=np.uint8) |
|
logger.debug(f"S{num_of_scene} (5-NumPy): Final NumPy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, Flags:{numpy_frame_arr.flags}") |
|
if numpy_frame_arr.size == 0 or numpy_frame_arr.ndim != 3 or numpy_frame_arr.shape[2] != 3: logger.error(f"S{num_of_scene}: Invalid NumPy shape/size ({numpy_frame_arr.shape}). Skipping."); continue |
|
|
|
base_image_clip_mvpy = ImageClip(numpy_frame_arr, transparent=False, ismask=False).set_duration(duration_for_scene) |
|
logger.debug(f"S{num_of_scene} (6-ImageClip): Base ImageClip. Duration: {base_image_clip_mvpy.duration}") |
|
|
|
debug_path_moviepy_frame = os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png") |
|
try: |
|
save_frame_time = min(0.1, base_image_clip_mvpy.duration / 2 if base_image_clip_mvpy.duration > 0 else 0.1) |
|
base_image_clip_mvpy.save_frame(debug_path_moviepy_frame, t=save_frame_time) |
|
logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip S{num_of_scene} to {debug_path_moviepy_frame}") |
|
except Exception as e_save_mvpy_frame: |
|
logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_mvpy_frame}", exc_info=True) |
|
|
|
fx_image_clip_mvpy = base_image_clip_mvpy |
|
try: |
|
scale_end_kb_val = random.uniform(1.03, 1.08) |
|
if duration_for_scene > 0: fx_image_clip_mvpy = base_image_clip_mvpy.fx(vfx.resize, lambda t_val: 1 + (scale_end_kb_val - 1) * (t_val / duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene} (8-KenBurns): Ken Burns applied.") |
|
else: logger.warning(f"S{num_of_scene}: Duration zero, skipping Ken Burns.") |
|
except Exception as e_kb_fx_loop: |
|
logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx_loop}", exc_info=False) |
|
active_scene_clip = fx_image_clip_mvpy |
|
elif type_of_asset == 'video': |
|
source_video_clip_obj=None |
|
try: |
|
logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}") |
|
source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False) |
|
temp_video_clip_obj_loop=source_video_clip_obj |
|
if source_video_clip_obj.duration!=duration_for_scene: |
|
if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene) |
|
else: |
|
if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene) |
|
else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).") |
|
active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene) |
|
if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size) |
|
logger.debug(f"S{num_of_scene}: Video asset processed. Final duration: {active_scene_clip.duration:.2f}s") |
|
except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue |
|
finally: |
|
if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'): |
|
try: source_video_clip_obj.close() |
|
except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}") |
|
else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue |
|
|
|
if active_scene_clip and action_in_key: |
|
try: |
|
dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else (active_scene_clip.duration if active_scene_clip.duration > 0 else 0) |
|
start_text_overlay_val=0.25 if active_scene_clip.duration > 0.5 else 0 |
|
if dur_text_overlay_val > 0: |
|
text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True) |
|
active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True) |
|
logger.debug(f"S{num_of_scene}: Text overlay composited.") |
|
else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.") |
|
except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True) |
|
|
|
if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.") |
|
except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True) |
|
finally: |
|
if active_scene_clip and active_scene_clip not in processed_moviepy_clips_list and hasattr(active_scene_clip,'close'): |
|
try: active_scene_clip.close(); logger.debug(f"S{num_of_scene}: Closed active_scene_clip in asset loop finally block because it wasn't added.") |
|
except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}") |
|
|
|
if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None |
|
transition_duration_val=0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic."); |
|
if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose") |
|
elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0] |
|
if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None |
|
logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s") |
|
if transition_duration_val > 0 and final_video_output_clip.duration > 0: |
|
if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val) |
|
else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0)) |
|
logger.debug("Applied fade in/out effects to final composite clip.") |
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0: |
|
try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.") |
|
except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True) |
|
elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.") |
|
if final_video_output_clip and final_video_output_clip.duration > 0: |
|
final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)") |
|
num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2 |
|
final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"]) |
|
logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str |
|
else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None |
|
except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
for clip_obj in processed_moviepy_clips_list: |
|
if clip_obj and hasattr(clip_obj, 'close'): |
|
try: clip_obj.close() |
|
except Exception as e_cl_proc: logger.warning(f"Ignoring error closing a processed clip ({type(clip_obj).__name__}): {e_cl_proc}") |
|
|
|
|
|
if narration_audio_clip_mvpy and hasattr(narration_audio_clip_mvpy, 'close'): |
|
try: narration_audio_clip_mvpy.close() |
|
except Exception as e_cl_narr: logger.warning(f"Ignoring error closing narration clip: {e_cl_narr}") |
|
|
|
|
|
if final_video_output_clip and hasattr(final_video_output_clip, 'close'): |
|
|
|
if not (len(processed_moviepy_clips_list) == 1 and final_video_output_clip is processed_moviepy_clips_list[0]): |
|
try: final_video_output_clip.close() |
|
except Exception as e_cl_final: logger.warning(f"Ignoring error closing final composite clip: {e_cl_final}") |