Update core/visual_engine.py
Browse files- core/visual_engine.py +294 -925
core/visual_engine.py
CHANGED
@@ -12,36 +12,23 @@ import random
|
|
12 |
import logging
|
13 |
|
14 |
# --- MoviePy Imports ---
|
15 |
-
from moviepy.editor import (
|
16 |
-
|
17 |
-
VideoFileClip,
|
18 |
-
concatenate_videoclips,
|
19 |
-
TextClip,
|
20 |
-
CompositeVideoClip,
|
21 |
-
AudioFileClip,
|
22 |
-
)
|
23 |
import moviepy.video.fx.all as vfx
|
24 |
|
25 |
# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
|
26 |
try:
|
27 |
-
if hasattr(Image,
|
28 |
-
if not hasattr(Image,
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
elif not hasattr(Image, "ANTIALIAS"): # Fallback if no common resampling attributes found
|
34 |
-
print(
|
35 |
-
"WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different."
|
36 |
-
)
|
37 |
except Exception as e_monkey_patch:
|
38 |
-
print(
|
39 |
-
f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}"
|
40 |
-
)
|
41 |
|
42 |
logger = logging.getLogger(__name__)
|
43 |
-
#
|
44 |
-
# logger.setLevel(logging.DEBUG) # For very verbose output during debugging
|
45 |
|
46 |
# --- External Service Client Imports ---
|
47 |
ELEVENLABS_CLIENT_IMPORTED = False
|
@@ -51,383 +38,157 @@ VoiceSettings = None
|
|
51 |
try:
|
52 |
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
|
53 |
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
|
54 |
-
|
55 |
ElevenLabsAPIClient = ImportedElevenLabsClient
|
56 |
Voice = ImportedVoice
|
57 |
VoiceSettings = ImportedVoiceSettings
|
58 |
ELEVENLABS_CLIENT_IMPORTED = True
|
59 |
logger.info("ElevenLabs client components imported successfully.")
|
60 |
except ImportError:
|
61 |
-
logger.warning(
|
62 |
-
"ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled."
|
63 |
-
)
|
64 |
except Exception as e_eleven_import:
|
65 |
-
logger.warning(
|
66 |
-
f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled."
|
67 |
-
)
|
68 |
|
69 |
RUNWAYML_SDK_IMPORTED = False
|
70 |
-
RunwayMLAPIClient = None
|
71 |
try:
|
72 |
-
from runwayml import RunwayML as ImportedRunwayMLClient
|
73 |
-
|
74 |
RunwayMLAPIClient = ImportedRunwayMLClient
|
75 |
RUNWAYML_SDK_IMPORTED = True
|
76 |
logger.info("RunwayML SDK imported successfully.")
|
77 |
except ImportError:
|
78 |
-
logger.warning(
|
79 |
-
"RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled."
|
80 |
-
)
|
81 |
except Exception as e_runway_sdk_import:
|
82 |
-
logger.warning(
|
83 |
-
f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled."
|
84 |
-
)
|
85 |
|
86 |
|
87 |
class VisualEngine:
|
88 |
-
DEFAULT_FONT_SIZE_PIL = 10
|
89 |
-
PREFERRED_FONT_SIZE_PIL = 20
|
90 |
VIDEO_OVERLAY_FONT_SIZE = 30
|
91 |
-
VIDEO_OVERLAY_FONT_COLOR =
|
92 |
-
|
93 |
-
|
94 |
-
PREFERRED_MOVIEPY_FONT = "Liberation-Sans-Bold" # Often available
|
95 |
|
96 |
-
def __init__(
|
97 |
-
self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"
|
98 |
-
):
|
99 |
self.output_dir = output_dir
|
100 |
os.makedirs(self.output_dir, exist_ok=True)
|
101 |
-
|
102 |
-
self.font_filename_pil
|
103 |
-
|
104 |
-
|
105 |
-
f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
|
106 |
-
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Alternative
|
107 |
-
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS fallback
|
108 |
-
f"C:/Windows/Fonts/arial.ttf", # Windows fallback
|
109 |
-
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf", # User's previous custom path
|
110 |
-
]
|
111 |
-
self.font_path_pil_resolved = next(
|
112 |
-
(p for p in font_paths_to_try if os.path.exists(p)), None
|
113 |
-
)
|
114 |
-
|
115 |
-
self.font_pil = ImageFont.load_default() # Default
|
116 |
-
self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
|
117 |
-
|
118 |
if self.font_path_pil_resolved:
|
119 |
-
try:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
|
124 |
-
logger.info(
|
125 |
-
f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}."
|
126 |
-
)
|
127 |
-
# Determine MoviePy font based on loaded PIL font
|
128 |
-
if "dejavu" in self.font_path_pil_resolved.lower():
|
129 |
-
self.video_overlay_font = "DejaVu-Sans-Bold"
|
130 |
-
elif "liberation" in self.font_path_pil_resolved.lower():
|
131 |
-
self.video_overlay_font = "Liberation-Sans-Bold"
|
132 |
-
else: # Fallback if custom font doesn't have an obvious ImageMagick name
|
133 |
-
self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
|
134 |
-
except IOError as e_font_load:
|
135 |
-
logger.error(
|
136 |
-
f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default."
|
137 |
-
)
|
138 |
-
else:
|
139 |
-
logger.warning("Custom Pillow font not found. Using default.")
|
140 |
-
|
141 |
-
self.openai_api_key = None
|
142 |
-
self.USE_AI_IMAGE_GENERATION = False
|
143 |
-
self.dalle_model = "dall-e-3"
|
144 |
-
self.image_size_dalle3 = "1792x1024"
|
145 |
self.video_frame_size = (1280, 720)
|
146 |
-
|
147 |
-
self.
|
148 |
-
self.
|
149 |
-
self.
|
150 |
-
self.
|
151 |
-
if
|
152 |
-
self.
|
153 |
-
|
154 |
-
similarity_boost=0.80,
|
155 |
-
style=0.15,
|
156 |
-
use_speaker_boost=True,
|
157 |
-
)
|
158 |
-
else:
|
159 |
-
self.elevenlabs_voice_settings = None
|
160 |
-
|
161 |
-
self.pexels_api_key = None
|
162 |
-
self.USE_PEXELS = False
|
163 |
-
self.runway_api_key = None
|
164 |
-
self.USE_RUNWAYML = False
|
165 |
-
self.runway_ml_client_instance = None # More specific name
|
166 |
-
|
167 |
-
# Attempt to initialize Runway client if SDK is present and env var might be set
|
168 |
-
if (
|
169 |
-
RUNWAYML_SDK_IMPORTED
|
170 |
-
and RunwayMLAPIClient
|
171 |
-
and os.getenv("RUNWAYML_API_SECRET")
|
172 |
-
):
|
173 |
-
try:
|
174 |
-
self.runway_ml_client_instance = RunwayMLAPIClient() # SDK uses env var
|
175 |
-
self.USE_RUNWAYML = True # Assume enabled if client initializes
|
176 |
-
logger.info(
|
177 |
-
"RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup."
|
178 |
-
)
|
179 |
-
except Exception as e_runway_init_startup:
|
180 |
-
logger.error(
|
181 |
-
f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}"
|
182 |
-
)
|
183 |
-
self.USE_RUNWAYML = False
|
184 |
-
|
185 |
logger.info("VisualEngine initialized.")
|
186 |
|
187 |
-
|
188 |
-
def set_openai_api_key(self, api_key):
|
189 |
-
self.openai_api_key = api_key
|
190 |
-
self.USE_AI_IMAGE_GENERATION = bool(api_key)
|
191 |
-
logger.info(
|
192 |
-
f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}"
|
193 |
-
)
|
194 |
-
|
195 |
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
|
196 |
self.elevenlabs_api_key = api_key
|
197 |
-
if voice_id_from_secret:
|
198 |
-
self.elevenlabs_voice_id = voice_id_from_secret
|
199 |
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
|
200 |
-
try:
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})"
|
205 |
-
)
|
206 |
-
except Exception as e:
|
207 |
-
logger.error(
|
208 |
-
f"ElevenLabs client initialization error: {e}. Service Disabled.",
|
209 |
-
exc_info=True,
|
210 |
-
)
|
211 |
-
self.USE_ELEVENLABS = False
|
212 |
-
self.elevenlabs_client = None
|
213 |
-
else:
|
214 |
-
self.USE_ELEVENLABS = False
|
215 |
-
logger.info(
|
216 |
-
f"ElevenLabs Service Disabled (API key not provided or SDK import issue)."
|
217 |
-
)
|
218 |
-
|
219 |
-
def set_pexels_api_key(self, api_key):
|
220 |
-
self.pexels_api_key = api_key
|
221 |
-
self.USE_PEXELS = bool(api_key)
|
222 |
-
logger.info(
|
223 |
-
f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}"
|
224 |
-
)
|
225 |
-
|
226 |
def set_runway_api_key(self, api_key):
|
227 |
-
self.runway_api_key = api_key
|
228 |
if api_key:
|
229 |
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
|
230 |
-
if not self.runway_ml_client_instance:
|
231 |
try:
|
232 |
-
# The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
|
233 |
-
# If it's not set, we set it temporarily for client initialization.
|
234 |
original_env_secret = os.getenv("RUNWAYML_API_SECRET")
|
235 |
-
if not original_env_secret:
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
self.USE_RUNWAYML = True # SDK client successfully initialized
|
243 |
-
logger.info(
|
244 |
-
"RunwayML Client initialized successfully using provided API key."
|
245 |
-
)
|
246 |
-
|
247 |
-
if not original_env_secret: # Clean up if we set it
|
248 |
-
del os.environ["RUNWAYML_API_SECRET"]
|
249 |
-
logger.info(
|
250 |
-
"Cleared temporary RUNWAYML_API_SECRET env var."
|
251 |
-
)
|
252 |
-
|
253 |
-
except Exception as e_client_init:
|
254 |
-
logger.error(
|
255 |
-
f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}",
|
256 |
-
exc_info=True,
|
257 |
-
)
|
258 |
-
self.USE_RUNWAYML = False
|
259 |
-
self.runway_ml_client_instance = None
|
260 |
-
else: # Client was already initialized (likely via env var during __init__)
|
261 |
-
self.USE_RUNWAYML = True
|
262 |
-
logger.info(
|
263 |
-
"RunwayML Client was already initialized (likely from env var). API key stored."
|
264 |
-
)
|
265 |
-
else: # SDK not imported
|
266 |
-
logger.warning(
|
267 |
-
"RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled."
|
268 |
-
)
|
269 |
-
self.USE_RUNWAYML = False
|
270 |
-
else: # No API key provided
|
271 |
-
self.USE_RUNWAYML = False
|
272 |
-
self.runway_ml_client_instance = None
|
273 |
-
logger.info("RunwayML Service Disabled (no API key provided).")
|
274 |
|
275 |
-
# --- Helper Methods ---
|
276 |
def _image_to_data_uri(self, image_path):
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
f"Could not determine MIME type for {image_path}, using default."
|
286 |
-
)
|
287 |
-
|
288 |
-
with open(image_path, "rb") as image_file:
|
289 |
-
encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
|
290 |
-
data_uri = f"data:{mime_type};base64,{encoded_string}"
|
291 |
-
logger.debug(
|
292 |
-
f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}..."
|
293 |
-
)
|
294 |
-
return data_uri
|
295 |
-
except FileNotFoundError:
|
296 |
-
logger.error(f"Image file not found at {image_path} for data URI conversion.")
|
297 |
-
return None
|
298 |
-
except Exception as e:
|
299 |
-
logger.error(
|
300 |
-
f"Error converting image {image_path} to data URI: {e}", exc_info=True
|
301 |
-
)
|
302 |
-
return None
|
303 |
|
304 |
def _map_resolution_to_runway_ratio(self, width, height):
|
305 |
-
|
306 |
-
|
307 |
-
supported_ratios_gen4
|
308 |
-
|
309 |
-
"720:1280",
|
310 |
-
"1104:832",
|
311 |
-
"832:1104",
|
312 |
-
"960:960",
|
313 |
-
"1584:672",
|
314 |
-
]
|
315 |
-
if ratio_str in supported_ratios_gen4:
|
316 |
-
return ratio_str
|
317 |
-
# Fallback or find closest - for now, strict matching or default
|
318 |
-
logger.warning(
|
319 |
-
f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720."
|
320 |
-
)
|
321 |
-
return "1280:720"
|
322 |
|
323 |
def _get_text_dimensions(self, text_content, font_object):
|
324 |
-
# (
|
325 |
-
|
326 |
-
if not text_content:
|
327 |
-
return 0, default_char_height
|
328 |
try:
|
329 |
-
if hasattr(font_object,
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
)
|
342 |
-
except Exception as e:
|
343 |
-
logger.warning(f"Error in _get_text_dimensions: {e}")
|
344 |
-
return (
|
345 |
-
int(len(text_content) * self.current_font_size_pil * 0.6),
|
346 |
-
int(self.current_font_size_pil * 1.2),
|
347 |
-
)
|
348 |
-
|
349 |
-
def _create_placeholder_image_content(self, text_description, filename, size=None):
|
350 |
-
# (Corrected version from previous response)
|
351 |
-
if size is None:
|
352 |
-
size = self.video_frame_size
|
353 |
-
img = Image.new("RGB", size, color=(20, 20, 40))
|
354 |
-
d = ImageDraw.Draw(img)
|
355 |
-
padding = 25
|
356 |
-
max_w = size[0] - (2 * padding)
|
357 |
-
lines = []
|
358 |
-
if not text_description:
|
359 |
-
text_description = "(Placeholder Image)"
|
360 |
-
words = text_description.split()
|
361 |
-
current_line_text = ""
|
362 |
for word_idx, word in enumerate(words):
|
363 |
prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
|
364 |
test_line_text = current_line_text + prospective_addition
|
365 |
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
|
366 |
-
if current_w == 0 and test_line_text.strip():
|
367 |
-
current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) # Estimate
|
368 |
|
369 |
-
if current_w <= max_w:
|
370 |
-
current_line_text = test_line_text
|
371 |
else:
|
372 |
-
if current_line_text.strip():
|
373 |
-
|
374 |
-
|
375 |
-
if current_line_text.strip():
|
376 |
-
lines.append(current_line_text.strip())
|
377 |
|
378 |
if not lines and text_description:
|
379 |
-
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil)
|
380 |
-
avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
|
381 |
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
|
382 |
-
lines.append(
|
383 |
-
|
384 |
-
+ ("..." if len(text_description) > chars_per_line else "")
|
385 |
-
)
|
386 |
-
elif not lines:
|
387 |
-
lines.append("(Placeholder Error)")
|
388 |
-
|
389 |
-
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil)
|
390 |
-
single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
|
391 |
-
max_lines = (
|
392 |
-
min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2))
|
393 |
-
if single_line_h > 0
|
394 |
-
else 1
|
395 |
-
)
|
396 |
-
max_lines = max(1, max_lines) # Ensure at least one line
|
397 |
|
|
|
|
|
|
|
|
|
398 |
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
|
399 |
for i in range(max_lines):
|
400 |
-
line_text = lines[i]
|
401 |
-
line_w
|
402 |
-
if line_w == 0 and line_text.strip():
|
403 |
-
line_w = len(line_text) * (self.current_font_size_pil * 0.6)
|
404 |
x_pos = (size[0] - line_w) / 2.0
|
405 |
-
try:
|
406 |
-
|
407 |
-
except Exception as e_draw:
|
408 |
-
logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
|
409 |
y_pos += single_line_h + 2
|
410 |
if i == 6 and max_lines > 7:
|
411 |
-
try:
|
412 |
-
|
413 |
-
except Exception as e_elip:
|
414 |
-
logger.error(f"Pillow d.text ellipsis error: {e_elip}")
|
415 |
-
break
|
416 |
-
|
417 |
filepath = os.path.join(self.output_dir, filename)
|
418 |
-
try:
|
419 |
-
|
420 |
-
return filepath
|
421 |
-
except Exception as e_save:
|
422 |
-
logger.error(
|
423 |
-
f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True
|
424 |
-
)
|
425 |
-
return None
|
426 |
|
427 |
def _search_pexels_image(self, query, output_filename_base):
|
428 |
-
# <<<
|
429 |
-
if not self.USE_PEXELS or not self.pexels_api_key:
|
430 |
-
return None
|
431 |
headers = {"Authorization": self.pexels_api_key}
|
432 |
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
|
433 |
base_name_for_pexels, _ = os.path.splitext(output_filename_base)
|
@@ -437,621 +198,229 @@ class VisualEngine:
|
|
437 |
logger.info(f"Pexels: Searching for '{query}'")
|
438 |
effective_query = " ".join(query.split()[:5])
|
439 |
params["query"] = effective_query
|
440 |
-
response = requests.get(
|
441 |
-
"https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20
|
442 |
-
)
|
443 |
response.raise_for_status()
|
444 |
data = response.json()
|
445 |
if data.get("photos") and len(data["photos"]) > 0:
|
446 |
photo_details = data["photos"][0]
|
447 |
photo_url = photo_details.get("src", {}).get("large2x")
|
448 |
-
if not photo_url:
|
449 |
-
|
450 |
-
f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"
|
451 |
-
)
|
452 |
-
return None
|
453 |
-
image_response = requests.get(photo_url, timeout=60)
|
454 |
-
image_response.raise_for_status()
|
455 |
img_data_pil = Image.open(io.BytesIO(image_response.content))
|
456 |
-
if img_data_pil.mode !=
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
return None # Less verbose for network
|
467 |
-
except Exception as e:
|
468 |
-
logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True)
|
469 |
-
return None
|
470 |
-
|
471 |
-
# --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
|
472 |
-
def _generate_video_clip_with_runwayml(
|
473 |
-
self,
|
474 |
-
text_prompt_for_motion,
|
475 |
-
input_image_path,
|
476 |
-
scene_identifier_filename_base,
|
477 |
-
target_duration_seconds=5,
|
478 |
-
):
|
479 |
-
if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
|
480 |
-
logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
|
481 |
-
return None
|
482 |
-
if not input_image_path or not os.path.exists(input_image_path):
|
483 |
-
logger.error(
|
484 |
-
f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}"
|
485 |
-
)
|
486 |
-
return None
|
487 |
-
|
488 |
image_data_uri = self._image_to_data_uri(input_image_path)
|
489 |
-
if not image_data_uri:
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
runway_ratio_str = self._map_resolution_to_runway_ratio(
|
494 |
-
self.video_frame_size[0], self.video_frame_size[1]
|
495 |
-
)
|
496 |
-
|
497 |
-
# Use a more descriptive output filename for Runway videos
|
498 |
-
base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
|
499 |
-
output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
|
500 |
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
|
501 |
-
|
502 |
-
logger.info(
|
503 |
-
f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'"
|
504 |
-
)
|
505 |
try:
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
duration=runway_duration,
|
512 |
-
ratio=runway_ratio_str,
|
513 |
-
# seed=random.randint(0, 4294967295), # Optional: for reproducibility
|
514 |
-
# Other Gen-4 params (motion_score, upscale, watermark etc. can be added here if available in SDK)
|
515 |
-
)
|
516 |
-
task_id = task_submission.id
|
517 |
-
logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")
|
518 |
-
|
519 |
-
poll_interval_seconds = 10
|
520 |
-
max_polling_duration_seconds = 6 * 60 # 6 minutes
|
521 |
-
start_time = time.time()
|
522 |
-
|
523 |
-
while time.time() - start_time < max_polling_duration_seconds:
|
524 |
-
time.sleep(poll_interval_seconds)
|
525 |
-
task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
|
526 |
logger.info(f"Runway task {task_id} status: {task_details.status}")
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
if not output_url:
|
548 |
-
logger.error(
|
549 |
-
f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}"
|
550 |
-
)
|
551 |
-
return None
|
552 |
-
|
553 |
-
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
|
554 |
-
video_response = requests.get(output_url, stream=True, timeout=300)
|
555 |
-
video_response.raise_for_status()
|
556 |
-
with open(output_video_filepath, "wb") as f:
|
557 |
-
for chunk in video_response.iter_content(chunk_size=8192):
|
558 |
-
f.write(chunk)
|
559 |
-
logger.info(
|
560 |
-
f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}"
|
561 |
-
)
|
562 |
-
return output_video_filepath
|
563 |
-
|
564 |
-
elif task_details.status in ["FAILED", "ABORTED", "ERROR"]: # Added ERROR
|
565 |
-
error_msg = (
|
566 |
-
getattr(task_details, "error_message", None)
|
567 |
-
or getattr(getattr(task_details, "output", None), "error", "Unknown error from Runway task.")
|
568 |
-
)
|
569 |
-
logger.error(
|
570 |
-
f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}"
|
571 |
-
)
|
572 |
-
return None
|
573 |
-
|
574 |
-
logger.warning(
|
575 |
-
f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds."
|
576 |
-
)
|
577 |
-
return None
|
578 |
-
|
579 |
-
except AttributeError as ae: # If SDK methods are not as expected
|
580 |
-
logger.error(
|
581 |
-
f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.",
|
582 |
-
exc_info=True,
|
583 |
-
)
|
584 |
-
return None
|
585 |
-
except Exception as e_runway_call:
|
586 |
-
logger.error(
|
587 |
-
f"General error during Runway Gen-4 API call or processing: {e_runway_call}",
|
588 |
-
exc_info=True,
|
589 |
-
)
|
590 |
-
return None
|
591 |
-
|
592 |
-
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
|
593 |
-
# (Keeping as before)
|
594 |
-
if size is None:
|
595 |
-
size = self.video_frame_size
|
596 |
-
fp = os.path.join(self.output_dir, filename)
|
597 |
-
tc = None
|
598 |
-
try:
|
599 |
-
tc = TextClip(
|
600 |
-
text_description,
|
601 |
-
fontsize=50,
|
602 |
-
color="white",
|
603 |
-
font=self.video_overlay_font,
|
604 |
-
bg_color="black",
|
605 |
-
size=size,
|
606 |
-
method="caption",
|
607 |
-
).set_duration(duration)
|
608 |
-
tc.write_videofile(
|
609 |
-
fp, fps=24, codec="libx264", preset="ultrafast", logger=None, threads=2
|
610 |
-
)
|
611 |
-
logger.info(f"Generic placeholder video: {fp}")
|
612 |
-
return fp
|
613 |
-
except Exception as e:
|
614 |
-
logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
|
615 |
-
return None
|
616 |
finally:
|
617 |
-
if tc and hasattr(tc,
|
618 |
-
tc.close()
|
619 |
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
motion_prompt_text_for_video,
|
625 |
-
scene_data,
|
626 |
-
scene_identifier_filename_base,
|
627 |
-
generate_as_video_clip=False,
|
628 |
-
runway_target_duration=5,
|
629 |
-
):
|
630 |
-
# (Logic updated for Runway Gen-4 workflow)
|
631 |
base_name, _ = os.path.splitext(scene_identifier_filename_base)
|
632 |
-
asset_info = {
|
633 |
-
|
634 |
-
|
635 |
-
"error": True,
|
636 |
-
"prompt_used": image_generation_prompt_text,
|
637 |
-
"error_message": "Asset generation init failed",
|
638 |
-
}
|
639 |
input_image_for_runway_path = None
|
640 |
-
# Use a distinct name for the base image if it's only an intermediate step for video
|
641 |
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
|
642 |
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
|
643 |
-
|
644 |
-
# STEP 1: Generate/acquire the base image
|
645 |
-
# Try DALL-E
|
646 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
647 |
-
|
648 |
-
for
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
)
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
}
|
680 |
-
break
|
681 |
-
except openai.RateLimitError as e:
|
682 |
-
logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...")
|
683 |
-
time.sleep(5 * (att_n + 1))
|
684 |
-
asset_info["error_message"] = str(e)
|
685 |
-
except Exception as e:
|
686 |
-
logger.error(f"DALL-E base img error:{e}", exc_info=True)
|
687 |
-
asset_info["error_message"] = str(e)
|
688 |
-
break
|
689 |
-
|
690 |
-
if asset_info["error"]:
|
691 |
-
logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
|
692 |
|
693 |
-
if asset_info["error"] and self.USE_PEXELS:
|
694 |
-
# Pexels Fallback
|
695 |
-
logger.info("Trying Pexels for base img.")
|
696 |
-
pqt = scene_data.get("pexels_search_query_감독", f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
|
697 |
-
pp = self._search_pexels_image(pqt, base_image_filename) # Use base_image_filename
|
698 |
-
if pp:
|
699 |
-
input_image_for_runway_path = pp
|
700 |
-
asset_info = {
|
701 |
-
"path": pp,
|
702 |
-
"type": "image",
|
703 |
-
"error": False,
|
704 |
-
"prompt_used": f"Pexels:{pqt}",
|
705 |
-
}
|
706 |
-
else:
|
707 |
-
current_em = asset_info.get("error_message", "")
|
708 |
-
asset_info["error_message"] = (current_em + " Pexels failed for base.").strip()
|
709 |
-
|
710 |
-
if asset_info["error"]:
|
711 |
-
# Placeholder Fallback
|
712 |
-
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
|
713 |
-
ppt = asset_info.get("prompt_used", image_generation_prompt_text)
|
714 |
-
php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename) # Use base_image_filename
|
715 |
-
if php:
|
716 |
-
input_image_for_runway_path = php
|
717 |
-
asset_info = {
|
718 |
-
"path": php,
|
719 |
-
"type": "image",
|
720 |
-
"error": False,
|
721 |
-
"prompt_used": ppt,
|
722 |
-
}
|
723 |
-
else:
|
724 |
-
current_em = asset_info.get("error_message", "")
|
725 |
-
asset_info["error_message"] = (current_em + " Base placeholder failed.").strip()
|
726 |
-
|
727 |
-
# STEP 2: If video clip is requested, use the generated base image with RunwayML
|
728 |
if generate_as_video_clip:
|
729 |
-
if not input_image_for_runway_path:
|
730 |
-
logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.")
|
731 |
-
asset_info["error"] = True
|
732 |
-
asset_info["error_message"] = (
|
733 |
-
asset_info.get("error_message", "") + " Base img completely failed, Runway abort."
|
734 |
-
).strip()
|
735 |
-
asset_info["type"] = "none"
|
736 |
-
return asset_info
|
737 |
-
|
738 |
if self.USE_RUNWAYML:
|
739 |
-
|
740 |
-
video_path
|
741 |
-
|
742 |
-
|
743 |
-
base_name,
|
744 |
-
runway_target_duration,
|
745 |
-
) # Pass base_name for runway output filename
|
746 |
-
if video_path and os.path.exists(video_path):
|
747 |
-
asset_info = {
|
748 |
-
"path": video_path,
|
749 |
-
"type": "video",
|
750 |
-
"error": False,
|
751 |
-
"prompt_used": motion_prompt_text_for_video,
|
752 |
-
"base_image_path": input_image_for_runway_path,
|
753 |
-
}
|
754 |
-
else:
|
755 |
-
logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
|
756 |
-
asset_info["error"] = True
|
757 |
-
asset_info["error_message"] = (
|
758 |
-
asset_info.get("error_message", "Base img ok.")
|
759 |
-
+ " RunwayML video step failed; use base img."
|
760 |
-
).strip()
|
761 |
-
asset_info["path"] = input_image_for_runway_path
|
762 |
-
asset_info["type"] = "image"
|
763 |
-
asset_info["prompt_used"] = image_generation_prompt_text
|
764 |
-
else:
|
765 |
-
logger.warning("RunwayML selected but not enabled/client not ready. Use base img.")
|
766 |
-
asset_info["error"] = True
|
767 |
-
asset_info["error_message"] = (
|
768 |
-
asset_info.get("error_message", "Base img ok.")
|
769 |
-
+ " RunwayML disabled; use base img."
|
770 |
-
).strip()
|
771 |
-
asset_info["path"] = input_image_for_runway_path
|
772 |
-
asset_info["type"] = "image"
|
773 |
-
asset_info["prompt_used"] = image_generation_prompt_text
|
774 |
-
|
775 |
return asset_info
|
776 |
|
777 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
778 |
-
# (Keep as before
|
779 |
-
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
if hasattr(self.
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
)
|
803 |
-
ab = self.elevenlabs_client.generate(
|
804 |
-
text=text_to_narrate, voice=vp, model="eleven_multilingual_v2"
|
805 |
-
)
|
806 |
-
with open(afp, "wb") as f:
|
807 |
-
f.write(ab)
|
808 |
-
logger.info(f"11L audio (non-stream): {afp}")
|
809 |
-
return afp
|
810 |
-
else:
|
811 |
-
logger.error("No 11L audio method.")
|
812 |
-
return None
|
813 |
-
|
814 |
-
# If we have a streaming method (asm), use it
|
815 |
-
if asm:
|
816 |
-
vps = {"voice_id": str(self.elevenlabs_voice_id)}
|
817 |
-
if self.elevenlabs_voice_settings:
|
818 |
-
if hasattr(self.elevenlabs_voice_settings, "model_dump"):
|
819 |
-
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
|
820 |
-
elif hasattr(self.elevenlabs_voice_settings, "dict"):
|
821 |
-
vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
|
822 |
-
else:
|
823 |
-
vps["voice_settings"] = self.elevenlabs_voice_settings
|
824 |
-
|
825 |
-
adi = asm(text=text_to_narrate, model_id="eleven_multilingual_v2", **vps)
|
826 |
-
with open(afp, "wb") as f:
|
827 |
-
for c in adi:
|
828 |
-
if c:
|
829 |
-
f.write(c)
|
830 |
-
logger.info(f"11L audio (stream): {afp}")
|
831 |
-
return afp
|
832 |
-
|
833 |
-
except Exception as e:
|
834 |
-
logger.error(f"11L audio error: {e}", exc_info=True)
|
835 |
-
return None
|
836 |
-
|
837 |
-
# --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
|
838 |
-
def assemble_animatic_from_assets(
|
839 |
-
self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24
|
840 |
-
):
|
841 |
-
# (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
|
842 |
-
if not asset_data_list:
|
843 |
-
logger.warning("No assets for animatic.")
|
844 |
-
return None
|
845 |
-
|
846 |
-
processed_clips = []
|
847 |
-
narration_clip = None
|
848 |
-
final_clip = None
|
849 |
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
|
858 |
-
|
859 |
-
if not (asset_path and os.path.exists(asset_path)):
|
860 |
-
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
|
861 |
-
continue
|
862 |
-
if scene_dur <= 0:
|
863 |
-
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
|
864 |
-
continue
|
865 |
-
|
866 |
-
current_scene_mvpy_clip = None
|
867 |
try:
|
868 |
-
if
|
869 |
-
|
870 |
-
logger.debug(f"S{
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
)
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
logger.
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}"
|
891 |
-
)
|
892 |
-
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
|
893 |
-
logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
|
894 |
-
continue
|
895 |
-
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
|
896 |
-
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
|
897 |
-
clip_base.save_frame(mvpy_dbg_path, t=0.1)
|
898 |
-
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
|
899 |
-
clip_fx = clip_base
|
900 |
-
try:
|
901 |
-
es = random.uniform(1.03, 1.08)
|
902 |
-
clip_fx = clip_base.fx(
|
903 |
-
vfx.resize, lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
|
904 |
-
).set_position("center")
|
905 |
-
except Exception as e:
|
906 |
-
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
|
907 |
-
current_scene_mvpy_clip = clip_fx
|
908 |
-
|
909 |
-
elif asset_type == "video":
|
910 |
-
src_clip = None
|
911 |
try:
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
self.video_frame_size[0],
|
917 |
-
)
|
918 |
-
if self.video_frame_size
|
919 |
-
else None,
|
920 |
-
audio=False,
|
921 |
-
)
|
922 |
-
tmp_clip = src_clip
|
923 |
-
if src_clip.duration != scene_dur:
|
924 |
-
if src_clip.duration > scene_dur:
|
925 |
-
tmp_clip = src_clip.subclip(0, scene_dur)
|
926 |
else:
|
927 |
-
if
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s)."
|
933 |
-
)
|
934 |
-
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
|
935 |
-
if current_scene_mvpy_clip.size != list(self.video_frame_size):
|
936 |
-
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
|
937 |
-
except Exception as e:
|
938 |
-
logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True)
|
939 |
-
continue
|
940 |
finally:
|
941 |
-
if
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
continue
|
946 |
-
|
947 |
-
if current_scene_mvpy_clip and key_action:
|
948 |
try:
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
fontsize=self.VIDEO_OVERLAY_FONT_SIZE,
|
959 |
-
color=self.VIDEO_OVERLAY_FONT_COLOR,
|
960 |
-
font=self.video_overlay_font,
|
961 |
-
bg_color="rgba(10,10,20,0.7)",
|
962 |
-
method="caption",
|
963 |
-
align="West",
|
964 |
-
size=(self.video_frame_size[0] * 0.9, None),
|
965 |
-
kerning=-1,
|
966 |
-
stroke_color="black",
|
967 |
-
stroke_width=1.5,
|
968 |
-
).set_duration(to_dur).set_start(to_start).set_position(
|
969 |
-
("center", 0.92), relative=True
|
970 |
-
)
|
971 |
-
current_scene_mvpy_clip = CompositeVideoClip(
|
972 |
-
[current_scene_mvpy_clip, txt_c], size=self.video_frame_size, use_bgclip=True
|
973 |
-
)
|
974 |
-
else:
|
975 |
-
logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
|
976 |
-
except Exception as e:
|
977 |
-
logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True)
|
978 |
-
|
979 |
-
if current_scene_mvpy_clip:
|
980 |
-
processed_clips.append(current_scene_mvpy_clip)
|
981 |
-
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
|
982 |
-
except Exception as e:
|
983 |
-
logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True)
|
984 |
finally:
|
985 |
-
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,
|
986 |
-
try:
|
987 |
-
|
988 |
-
except:
|
989 |
-
pass
|
990 |
|
991 |
-
if not processed_clips:
|
992 |
-
|
993 |
-
return None
|
994 |
-
|
995 |
-
td = 0.75
|
996 |
try:
|
997 |
-
logger.info(f"Concatenating {len(processed_clips)} clips.")
|
998 |
-
if len(processed_clips) >
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
if
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
narration_clip = AudioFileClip(overall_narration_path)
|
1016 |
-
final_clip = final_clip.set_audio(narration_clip)
|
1017 |
-
logger.info("Narration added.")
|
1018 |
-
except Exception as e:
|
1019 |
-
logger.error(f"Narration add error:{e}", exc_info=True)
|
1020 |
-
elif final_clip.duration <= 0:
|
1021 |
-
logger.warning("Video no duration. No audio.")
|
1022 |
-
|
1023 |
-
if final_clip and final_clip.duration > 0:
|
1024 |
-
op = os.path.join(self.output_dir, output_filename)
|
1025 |
-
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
|
1026 |
-
final_clip.write_videofile(
|
1027 |
-
op,
|
1028 |
-
fps=fps,
|
1029 |
-
codec="libx264",
|
1030 |
-
preset="medium",
|
1031 |
-
audio_codec="aac",
|
1032 |
-
temp_audiofile=os.path.join(self.output_dir, f"temp-audio-{os.urandom(4).hex()}.m4a"),
|
1033 |
-
remove_temp=True,
|
1034 |
-
threads=os.cpu_count() or 2,
|
1035 |
-
logger="bar",
|
1036 |
-
bitrate="5000k",
|
1037 |
-
ffmpeg_params=["-pix_fmt", "yuv420p"],
|
1038 |
-
)
|
1039 |
-
logger.info(f"Video created:{op}")
|
1040 |
-
return op
|
1041 |
-
else:
|
1042 |
-
logger.error("Final clip invalid. No write.")
|
1043 |
-
return None
|
1044 |
-
except Exception as e:
|
1045 |
-
logger.error(f"Video write error:{e}", exc_info=True)
|
1046 |
-
return None
|
1047 |
finally:
|
1048 |
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
|
1049 |
-
|
1050 |
-
for
|
1051 |
-
if
|
1052 |
-
try:
|
1053 |
-
|
1054 |
-
except Exception as e_close:
|
1055 |
-
logger.warning(
|
1056 |
-
f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}"
|
1057 |
-
)
|
|
|
12 |
import logging
|
13 |
|
14 |
# --- MoviePy Imports ---
|
15 |
+
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
|
16 |
+
CompositeVideoClip, AudioFileClip)
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
import moviepy.video.fx.all as vfx
|
18 |
|
19 |
# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
|
20 |
try:
|
21 |
+
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
|
22 |
+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
|
23 |
+
elif hasattr(Image, 'LANCZOS'): # Pillow 8
|
24 |
+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
|
25 |
+
elif not hasattr(Image, 'ANTIALIAS'):
|
26 |
+
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
|
|
|
|
|
|
|
|
|
27 |
except Exception as e_monkey_patch:
|
28 |
+
print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")
|
|
|
|
|
29 |
|
30 |
logger = logging.getLogger(__name__)
|
31 |
+
# logger.setLevel(logging.DEBUG) # Uncomment for very verbose debugging
|
|
|
32 |
|
33 |
# --- External Service Client Imports ---
|
34 |
ELEVENLABS_CLIENT_IMPORTED = False
|
|
|
38 |
try:
|
39 |
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
|
40 |
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
|
|
|
41 |
ElevenLabsAPIClient = ImportedElevenLabsClient
|
42 |
Voice = ImportedVoice
|
43 |
VoiceSettings = ImportedVoiceSettings
|
44 |
ELEVENLABS_CLIENT_IMPORTED = True
|
45 |
logger.info("ElevenLabs client components imported successfully.")
|
46 |
except ImportError:
|
47 |
+
logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.")
|
|
|
|
|
48 |
except Exception as e_eleven_import:
|
49 |
+
logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.")
|
|
|
|
|
50 |
|
51 |
RUNWAYML_SDK_IMPORTED = False
|
52 |
+
RunwayMLAPIClient = None
|
53 |
try:
|
54 |
+
from runwayml import RunwayML as ImportedRunwayMLClient
|
|
|
55 |
RunwayMLAPIClient = ImportedRunwayMLClient
|
56 |
RUNWAYML_SDK_IMPORTED = True
|
57 |
logger.info("RunwayML SDK imported successfully.")
|
58 |
except ImportError:
|
59 |
+
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
|
|
|
|
|
60 |
except Exception as e_runway_sdk_import:
|
61 |
+
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.")
|
|
|
|
|
62 |
|
63 |
|
64 |
class VisualEngine:
|
65 |
+
DEFAULT_FONT_SIZE_PIL = 10
|
66 |
+
PREFERRED_FONT_SIZE_PIL = 20
|
67 |
VIDEO_OVERLAY_FONT_SIZE = 30
|
68 |
+
VIDEO_OVERLAY_FONT_COLOR = 'white'
|
69 |
+
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
|
70 |
+
PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'
|
|
|
71 |
|
72 |
+
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
|
|
|
|
|
73 |
self.output_dir = output_dir
|
74 |
os.makedirs(self.output_dir, exist_ok=True)
|
75 |
+
self.font_filename_pil = "DejaVuSans-Bold.ttf"
|
76 |
+
font_paths_to_try = [ self.font_filename_pil, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
|
77 |
+
self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None)
|
78 |
+
self.font_pil = ImageFont.load_default(); self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if self.font_path_pil_resolved:
|
80 |
+
try: self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL); self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.font_path_pil_resolved} sz {self.current_font_size_pil}."); self.video_overlay_font = 'DejaVu-Sans-Bold' if "dejavu" in self.font_path_pil_resolved.lower() else ('Liberation-Sans-Bold' if "liberation" in self.font_path_pil_resolved.lower() else self.DEFAULT_MOVIEPY_FONT)
|
81 |
+
except IOError as e_font_load: logger.error(f"Pillow font IOError '{self.font_path_pil_resolved}': {e_font_load}. Default.")
|
82 |
+
else: logger.warning("Custom Pillow font not found. Default.")
|
83 |
+
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
self.video_frame_size = (1280, 720)
|
85 |
+
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
|
86 |
+
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
|
87 |
+
else: self.elevenlabs_voice_settings = None
|
88 |
+
self.pexels_api_key = None; self.USE_PEXELS = False
|
89 |
+
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
|
90 |
+
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"):
|
91 |
+
try: self.runway_ml_client_instance = RunwayMLAPIClient(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
|
92 |
+
except Exception as e_runway_init_startup: logger.error(f"Initial RunwayML client init failed: {e_runway_init_startup}"); self.USE_RUNWAYML = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
logger.info("VisualEngine initialized.")
|
94 |
|
95 |
+
def set_openai_api_key(self, api_key): self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
|
97 |
self.elevenlabs_api_key = api_key
|
98 |
+
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
|
|
|
99 |
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
|
100 |
+
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS = bool(self.elevenlabs_client); logger.info(f"11L Client: {'Ready' if self.USE_ELEVENLABS else 'Failed'} (Voice: {self.elevenlabs_voice_id})")
|
101 |
+
except Exception as e: logger.error(f"11L client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client=None
|
102 |
+
else: self.USE_ELEVENLABS = False; logger.info(f"11L Disabled (key/SDK).")
|
103 |
+
def set_pexels_api_key(self, api_key): self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def set_runway_api_key(self, api_key):
|
105 |
+
self.runway_api_key = api_key
|
106 |
if api_key:
|
107 |
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
|
108 |
+
if not self.runway_ml_client_instance:
|
109 |
try:
|
|
|
|
|
110 |
original_env_secret = os.getenv("RUNWAYML_API_SECRET")
|
111 |
+
if not original_env_secret: os.environ["RUNWAYML_API_SECRET"] = api_key; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
|
112 |
+
self.runway_ml_client_instance = RunwayMLAPIClient(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_runway_api_key.")
|
113 |
+
if not original_env_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
|
114 |
+
except Exception as e: logger.error(f"RunwayML Client init in set_runway_api_key fail: {e}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_client_instance=None
|
115 |
+
else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
|
116 |
+
else: logger.warning("RunwayML SDK not imported. Service disabled."); self.USE_RUNWAYML = False
|
117 |
+
else: self.USE_RUNWAYML = False; self.runway_ml_client_instance = None; logger.info("RunwayML Disabled (no API key).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
119 |
def _image_to_data_uri(self, image_path):
|
120 |
+
# (Implementation from before)
|
121 |
+
try: mime_type,_=mimetypes.guess_type(image_path)
|
122 |
+
if not mime_type:ext=os.path.splitext(image_path)[1].lower();mime_map={".png":"image/png",".jpg":"image/jpeg",".jpeg":"image/jpeg"};mime_type=mime_map.get(ext,"application/octet-stream");
|
123 |
+
if mime_type=="application/octet-stream":logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
|
124 |
+
with open(image_path,"rb")as image_file:encoded_string=base64.b64encode(image_file.read()).decode('utf-8')
|
125 |
+
data_uri=f"data:{mime_type};base64,{encoded_string}";logger.debug(f"Data URI for {os.path.basename(image_path)} (start): {data_uri[:100]}...");return data_uri
|
126 |
+
except FileNotFoundError:logger.error(f"Img not found {image_path} for data URI.");return None
|
127 |
+
except Exception as e:logger.error(f"Error converting {image_path} to data URI:{e}",exc_info=True);return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
def _map_resolution_to_runway_ratio(self, width, height):
|
130 |
+
# (Implementation from before)
|
131 |
+
ratio_str=f"{width}:{height}";supported_ratios_gen4=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
|
132 |
+
if ratio_str in supported_ratios_gen4:return ratio_str
|
133 |
+
logger.warning(f"Res {ratio_str} not in Gen-4 list. Default 1280:720.");return "1280:720"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def _get_text_dimensions(self, text_content, font_object):
|
136 |
+
# (Implementation from before)
|
137 |
+
dch=getattr(font_object,'size',self.current_font_size_pil);
|
138 |
+
if not text_content:return 0,dch
|
|
|
139 |
try:
|
140 |
+
if hasattr(font_object,'getbbox'):bb=font_object.getbbox(text_content);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else dch
|
141 |
+
elif hasattr(font_object,'getsize'):w,h=font_object.getsize(text_content);return w,h if h>0 else dch
|
142 |
+
else:return int(len(text_content)*dch*0.6),int(dch*1.2)
|
143 |
+
except Exception as e:logger.warning(f"Error in _get_text_dimensions:{e}");return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2)
|
144 |
+
|
145 |
+
def _create_placeholder_image_content(self,text_description,filename,size=None):
|
146 |
+
# <<< CORRECTED VERSION OF THIS METHOD >>>
|
147 |
+
if size is None: size = self.video_frame_size
|
148 |
+
img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
|
149 |
+
max_w = size[0] - (2 * padding); lines = []
|
150 |
+
if not text_description: text_description = "(Placeholder Image)"
|
151 |
+
words = text_description.split(); current_line_text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
for word_idx, word in enumerate(words):
|
153 |
prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
|
154 |
test_line_text = current_line_text + prospective_addition
|
155 |
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
|
156 |
+
if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6)
|
|
|
157 |
|
158 |
+
if current_w <= max_w: current_line_text = test_line_text
|
|
|
159 |
else:
|
160 |
+
if current_line_text.strip(): lines.append(current_line_text.strip())
|
161 |
+
current_line_text = prospective_addition
|
162 |
+
if current_line_text.strip(): lines.append(current_line_text.strip())
|
|
|
|
|
163 |
|
164 |
if not lines and text_description:
|
165 |
+
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
|
|
|
166 |
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
|
167 |
+
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
|
168 |
+
elif not lines: lines.append("(Placeholder Error)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
|
171 |
+
max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
|
172 |
+
max_lines = max(1, max_lines)
|
173 |
+
|
174 |
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
|
175 |
for i in range(max_lines):
|
176 |
+
line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
|
177 |
+
if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6)
|
|
|
|
|
178 |
x_pos = (size[0] - line_w) / 2.0
|
179 |
+
try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
|
180 |
+
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
|
|
|
|
|
181 |
y_pos += single_line_h + 2
|
182 |
if i == 6 and max_lines > 7:
|
183 |
+
try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
|
184 |
+
except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
|
|
|
|
|
|
|
|
|
185 |
filepath = os.path.join(self.output_dir, filename)
|
186 |
+
try: img.save(filepath); return filepath
|
187 |
+
except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
def _search_pexels_image(self, query, output_filename_base):
|
190 |
+
# <<< CORRECTED VERSION OF THIS METHOD >>>
|
191 |
+
if not self.USE_PEXELS or not self.pexels_api_key: return None
|
|
|
192 |
headers = {"Authorization": self.pexels_api_key}
|
193 |
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
|
194 |
base_name_for_pexels, _ = os.path.splitext(output_filename_base)
|
|
|
198 |
logger.info(f"Pexels: Searching for '{query}'")
|
199 |
effective_query = " ".join(query.split()[:5])
|
200 |
params["query"] = effective_query
|
201 |
+
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
|
|
|
|
|
202 |
response.raise_for_status()
|
203 |
data = response.json()
|
204 |
if data.get("photos") and len(data["photos"]) > 0:
|
205 |
photo_details = data["photos"][0]
|
206 |
photo_url = photo_details.get("src", {}).get("large2x")
|
207 |
+
if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None
|
208 |
+
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
209 |
img_data_pil = Image.open(io.BytesIO(image_response.content))
|
210 |
+
if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB')
|
211 |
+
img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath
|
212 |
+
else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None
|
213 |
+
except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None
|
214 |
+
except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None
|
215 |
+
|
216 |
+
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
|
217 |
+
# (Implementation from previous response, with Runway SDK calls)
|
218 |
+
if not self.USE_RUNWAYML or not self.runway_ml_client_instance: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
|
219 |
+
if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
image_data_uri = self._image_to_data_uri(input_image_path)
|
221 |
+
if not image_data_uri: return None
|
222 |
+
runway_duration = 10 if target_duration_seconds >= 8 else 5
|
223 |
+
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
|
224 |
+
base_name_runway, _ = os.path.splitext(scene_identifier_filename_base); output_video_filename = base_name_runway + f"_runway_gen4_d{runway_duration}s.mp4" # Corrected base name usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
|
226 |
+
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
|
|
|
|
|
|
|
227 |
try:
|
228 |
+
task_submission = self.runway_ml_client_instance.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri, prompt_text=text_prompt_for_motion, duration=runway_duration, ratio=runway_ratio_str)
|
229 |
+
task_id = task_submission.id; logger.info(f"Runway Gen-4 task ID: {task_id}. Polling...")
|
230 |
+
poll_interval=10; max_polls=36; start_poll_time = time.time()
|
231 |
+
while time.time() - start_poll_time < max_polls * poll_interval:
|
232 |
+
time.sleep(poll_interval); task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
logger.info(f"Runway task {task_id} status: {task_details.status}")
|
234 |
+
if task_details.status == 'SUCCEEDED':
|
235 |
+
output_url = getattr(getattr(task_details,'output',None),'url',None) or (getattr(task_details,'artifacts',None) and task_details.artifacts[0].url if task_details.artifacts and hasattr(task_details.artifacts[0],'url') else None) or (getattr(task_details,'artifacts',None) and task_details.artifacts[0].download_url if task_details.artifacts and hasattr(task_details.artifacts[0],'download_url') else None)
|
236 |
+
if not output_url: logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL. Details: {vars(task_details) if hasattr(task_details,'__dict__') else task_details}"); return None
|
237 |
+
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading: {output_url}")
|
238 |
+
video_response = requests.get(output_url, stream=True, timeout=300); video_response.raise_for_status()
|
239 |
+
with open(output_video_filepath,'wb') as f:
|
240 |
+
for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
|
241 |
+
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}"); return output_video_filepath
|
242 |
+
elif task_details.status in ['FAILED','ABORTED','ERROR']:
|
243 |
+
em = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error',"Unknown Runway error.")
|
244 |
+
logger.error(f"Runway task {task_id} status: {task_details.status}. Error: {em}"); return None
|
245 |
+
logger.warning(f"Runway task {task_id} timed out."); return None
|
246 |
+
except AttributeError as ae: logger.error(f"RunwayML SDK AttrError: {ae}. SDK/methods changed?", exc_info=True); return None
|
247 |
+
except Exception as e: logger.error(f"Runway Gen-4 API error: {e}", exc_info=True); return None
|
248 |
+
|
249 |
+
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
|
250 |
+
# (Keep as before)
|
251 |
+
if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
|
252 |
+
try: tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
|
253 |
+
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
finally:
|
255 |
+
if tc and hasattr(tc, 'close'): tc.close()
|
|
|
256 |
|
257 |
+
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
|
258 |
+
scene_data, scene_identifier_filename_base,
|
259 |
+
generate_as_video_clip=False, runway_target_duration=5):
|
260 |
+
# <<< THIS IS THE CORRECTED METHOD with fixed DALL-E loop >>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
base_name, _ = os.path.splitext(scene_identifier_filename_base)
|
262 |
+
asset_info = {'path': None, 'type': 'none', 'error': True,
|
263 |
+
'prompt_used': image_generation_prompt_text,
|
264 |
+
'error_message': 'Asset generation init failed'}
|
|
|
|
|
|
|
|
|
265 |
input_image_for_runway_path = None
|
|
|
266 |
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
|
267 |
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
|
268 |
+
|
|
|
|
|
269 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
270 |
+
max_retries = 2; attempt_count_dalle = 0
|
271 |
+
for attempt_num_dalle in range(max_retries):
|
272 |
+
attempt_count_dalle = attempt_num_dalle + 1
|
273 |
+
try: # DALL-E attempt try block
|
274 |
+
logger.info(f"Attempt {attempt_count_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}...")
|
275 |
+
client_oai = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
|
276 |
+
response_oai = client_oai.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid")
|
277 |
+
img_url_oai = response_oai.data[0].url
|
278 |
+
revised_prompt_oai = getattr(response_oai.data[0],'revised_prompt',None)
|
279 |
+
if revised_prompt_oai: logger.info(f"DALL-E revised: {revised_prompt_oai[:70]}...")
|
280 |
+
img_response_get = requests.get(img_url_oai,timeout=120); img_response_get.raise_for_status()
|
281 |
+
pil_img_oai = Image.open(io.BytesIO(img_response_get.content))
|
282 |
+
if pil_img_oai.mode!='RGB': pil_img_oai=pil_img_oai.convert('RGB')
|
283 |
+
pil_img_oai.save(base_image_filepath); logger.info(f"DALL-E base img saved: {base_image_filepath}")
|
284 |
+
input_image_for_runway_path=base_image_filepath
|
285 |
+
asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':revised_prompt_oai}
|
286 |
+
break # Success, exit loop
|
287 |
+
except openai.RateLimitError as e_rl: logger.warning(f"OpenAI RateLimit Att {attempt_count_dalle}:{e_rl}.Retry...");time.sleep(5*attempt_count_dalle);asset_info['error_message']=str(e_rl)
|
288 |
+
except openai.APIError as e_api_oai: logger.error(f"OpenAI APIError Att {attempt_count_dalle}:{e_api_oai}");asset_info['error_message']=str(e_api_oai);break
|
289 |
+
except requests.exceptions.RequestException as e_req_oai: logger.error(f"Requests Err DALL-E Att {attempt_count_dalle}:{e_req_oai}");asset_info['error_message']=str(e_req_oai);break
|
290 |
+
except Exception as e_gen_oai: logger.error(f"General DALL-E Err Att {attempt_count_dalle}:{e_gen_oai}",exc_info=True);asset_info['error_message']=str(e_gen_oai);break
|
291 |
+
if asset_info['error']: logger.warning(f"DALL-E failed after {attempt_count_dalle} attempts for base img.")
|
292 |
+
|
293 |
+
if asset_info['error'] and self.USE_PEXELS:
|
294 |
+
logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_감독',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename);
|
295 |
+
if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
|
296 |
+
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
|
297 |
+
|
298 |
+
if asset_info['error']:
|
299 |
+
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename);
|
300 |
+
if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
|
301 |
+
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
if generate_as_video_clip:
|
304 |
+
if not input_image_for_runway_path:logger.error("RunwayML video: base img failed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info['type']='none';return asset_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
if self.USE_RUNWAYML:
|
306 |
+
video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration)
|
307 |
+
if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
|
308 |
+
else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
|
309 |
+
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
return asset_info
|
311 |
|
312 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
313 |
+
# (Keep as before)
|
314 |
+
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
|
315 |
+
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
|
316 |
+
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
|
317 |
+
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
|
318 |
+
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
|
319 |
+
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
|
320 |
+
else:logger.error("No 11L audio method.");return None
|
321 |
+
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
|
322 |
+
if self.elevenlabs_voice_settings:
|
323 |
+
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
|
324 |
+
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
|
325 |
+
else:vps["voice_settings"]=self.elevenlabs_voice_settings
|
326 |
+
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
|
327 |
+
with open(afp,"wb")as f:
|
328 |
+
for c_chunk in adi: # Renamed c to c_chunk
|
329 |
+
if c_chunk:f.write(c_chunk)
|
330 |
+
logger.info(f"11L audio (stream): {afp}");return afp
|
331 |
+
except Exception as e_11l:logger.error(f"11L audio error: {e_11l}",exc_info=True);return None # Renamed e to e_11l
|
332 |
+
|
333 |
+
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
|
334 |
+
# (Keep as in the version with robust image processing, C-contiguous array, debug saves, and pix_fmt)
|
335 |
+
if not asset_data_list: logger.warning("No assets for animatic."); return None
|
336 |
+
processed_clips = []; narration_clip_mvpy = None; final_composite_video_clip = None # Renamed variables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
|
338 |
+
for i, asset_info_dict in enumerate(asset_data_list): # Renamed asset_info to asset_info_dict
|
339 |
+
asset_p, asset_t, scene_d = asset_info_dict.get('path'), asset_info_dict.get('type'), asset_info_dict.get('duration', 4.5)
|
340 |
+
scene_n, key_act = asset_info_dict.get('scene_num', i + 1), asset_info_dict.get('key_action', '')
|
341 |
+
logger.info(f"S{scene_n}: Path='{asset_p}', Type='{asset_t}', Dur='{scene_d}'s")
|
342 |
+
if not (asset_p and os.path.exists(asset_p)): logger.warning(f"S{scene_n}: Not found '{asset_p}'. Skip."); continue
|
343 |
+
if scene_d <= 0: logger.warning(f"S{scene_n}: Invalid duration ({scene_d}s). Skip."); continue
|
344 |
+
current_scene_clip_mvpy = None # Renamed current_scene_mvpy_clip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
try:
|
346 |
+
if asset_t == 'image':
|
347 |
+
# ... (Robust image processing logic from previous full version) ...
|
348 |
+
pil_img_opened = Image.open(asset_p); logger.debug(f"S{scene_n}: Loaded img. Mode:{pil_img_opened.mode}, Size:{pil_img_opened.size}")
|
349 |
+
img_rgba_converted = pil_img_opened.convert('RGBA') if pil_img_opened.mode != 'RGBA' else pil_img_opened.copy()
|
350 |
+
thumb_img = img_rgba_converted.copy(); res_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb_img.thumbnail(self.video_frame_size,res_filter)
|
351 |
+
canvas_for_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); x_offset,y_offset=(self.video_frame_size[0]-thumb_img.width)//2,(self.video_frame_size[1]-thumb_img.height)//2
|
352 |
+
canvas_for_rgba.paste(thumb_img,(x_offset,y_offset),thumb_img)
|
353 |
+
final_rgb_for_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_for_pil.paste(canvas_for_rgba,mask=canvas_for_rgba.split()[3])
|
354 |
+
debug_path_pre_numpy = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_n}.png"); final_rgb_for_pil.save(debug_path_pre_numpy); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_n} to {debug_path_pre_numpy}")
|
355 |
+
numpy_frame = np.array(final_rgb_for_pil,dtype=np.uint8);
|
356 |
+
if not numpy_frame.flags['C_CONTIGUOUS']: numpy_frame=np.ascontiguousarray(numpy_frame,dtype=np.uint8)
|
357 |
+
logger.debug(f"S{scene_n}: NumPy for MoviePy. Shape:{numpy_frame.shape}, DType:{numpy_frame.dtype}, C-Contig:{numpy_frame.flags['C_CONTIGUOUS']}")
|
358 |
+
if numpy_frame.size==0 or numpy_frame.ndim!=3 or numpy_frame.shape[2]!=3: logger.error(f"S{scene_n}: Invalid NumPy. Skip."); continue
|
359 |
+
image_clip_base = ImageClip(numpy_frame,transparent=False).set_duration(scene_d)
|
360 |
+
moviepy_debug_frame_save_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_n}.png"); image_clip_base.save_frame(moviepy_debug_frame_save_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_n} to {moviepy_debug_frame_save_path}")
|
361 |
+
image_clip_with_fx = image_clip_base
|
362 |
+
try: end_scale_kb=random.uniform(1.03,1.08); image_clip_with_fx=image_clip_base.fx(vfx.resize,lambda time_t:1+(end_scale_kb-1)*(time_t/scene_d) if scene_d>0 else 1).set_position('center')
|
363 |
+
except Exception as e_kb: logger.error(f"S{scene_n} Ken Burns error: {e_kb}",exc_info=False)
|
364 |
+
current_scene_mvpy_clip = image_clip_with_fx
|
365 |
+
elif asset_t == 'video':
|
366 |
+
# ... (Video processing logic from previous full version) ...
|
367 |
+
source_video_file_clip=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
try:
|
369 |
+
source_video_file_clip=VideoFileClip(asset_p,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
|
370 |
+
temp_video_clip_obj=source_video_file_clip
|
371 |
+
if source_video_file_clip.duration!=scene_d:
|
372 |
+
if source_video_file_clip.duration>scene_d:temp_video_clip_obj=source_video_file_clip.subclip(0,scene_d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
else:
|
374 |
+
if scene_d/source_video_file_clip.duration > 1.5 and source_video_file_clip.duration>0.1:temp_video_clip_obj=source_video_file_clip.loop(duration=scene_d)
|
375 |
+
else:temp_video_clip_obj=source_video_file_clip.set_duration(source_video_file_clip.duration);logger.info(f"S{scene_n} Video clip ({source_video_file_clip.duration:.2f}s) shorter than target ({scene_d:.2f}s).")
|
376 |
+
current_scene_mvpy_clip=temp_video_clip_obj.set_duration(scene_d)
|
377 |
+
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
|
378 |
+
except Exception as e_vidload:logger.error(f"S{scene_n} Video load error '{asset_p}':{e_vidload}",exc_info=True);continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
finally:
|
380 |
+
if source_video_file_clip and source_video_file_clip is not current_scene_mvpy_clip and hasattr(source_video_file_clip,'close'):source_video_file_clip.close()
|
381 |
+
else: logger.warning(f"S{scene_n} Unknown asset type '{asset_t}'. Skip."); continue
|
382 |
+
|
383 |
+
if current_scene_mvpy_clip and key_act: # Text Overlay
|
|
|
|
|
|
|
384 |
try:
|
385 |
+
text_overlay_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
|
386 |
+
text_overlay_s_time=0.25
|
387 |
+
if text_overlay_dur > 0:
|
388 |
+
text_clip_obj=TextClip(f"Scene {scene_n}\n{key_act}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(text_overlay_dur).set_start(text_overlay_s_time).set_position(('center',0.92),relative=True)
|
389 |
+
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,text_clip_obj],size=self.video_frame_size,use_bgclip=True)
|
390 |
+
else: logger.warning(f"S{scene_n}: Text overlay duration zero. Skip text.")
|
391 |
+
except Exception as e_txtclip:logger.error(f"S{scene_n} TextClip error:{e_txtclip}. No text.",exc_info=True)
|
392 |
+
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_n} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
|
393 |
+
except Exception as e_asset_loop:logger.error(f"MAJOR Error S{scene_n} ({asset_p}):{e_asset_loop}",exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
finally:
|
395 |
+
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
|
396 |
+
try: current_scene_mvpy_clip.close()
|
397 |
+
except: pass
|
|
|
|
|
398 |
|
399 |
+
if not processed_clips:logger.warning("No clips processed. Abort.");return None
|
400 |
+
transition_val=0.75
|
|
|
|
|
|
|
401 |
try:
|
402 |
+
logger.info(f"Concatenating {len(processed_clips)} clips.");
|
403 |
+
if len(processed_clips)>1:final_composite_video_clip=concatenate_videoclips(processed_clips,padding=-transition_val if transition_val>0 else 0,method="compose")
|
404 |
+
elif processed_clips:final_composite_video_clip=processed_clips[0]
|
405 |
+
if not final_composite_video_clip:logger.error("Concatenation failed.");return None
|
406 |
+
logger.info(f"Concatenated dur:{final_composite_video_clip.duration:.2f}s")
|
407 |
+
if transition_val>0 and final_composite_video_clip.duration>0:
|
408 |
+
if final_composite_video_clip.duration>transition_val*2:final_composite_video_clip=final_composite_video_clip.fx(vfx.fadein,transition_val).fx(vfx.fadeout,transition_val)
|
409 |
+
else:final_composite_video_clip=final_composite_video_clip.fx(vfx.fadein,min(transition_val,final_composite_video_clip.duration/2.0))
|
410 |
+
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_video_clip.duration>0:
|
411 |
+
try:narration_clip_mvpy=AudioFileClip(overall_narration_path);final_composite_video_clip=final_composite_video_clip.set_audio(narration_clip_mvpy);logger.info("Narration added.")
|
412 |
+
except Exception as e_narr:logger.error(f"Narration add error:{e_narr}",exc_info=True)
|
413 |
+
elif final_composite_video_clip.duration<=0:logger.warning("Video no duration. No audio.")
|
414 |
+
if final_composite_video_clip and final_composite_video_clip.duration>0:
|
415 |
+
output_vid_path=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{output_vid_path} (Dur:{final_composite_video_clip.duration:.2f}s)")
|
416 |
+
final_composite_video_clip.write_videofile(output_vid_path,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
|
417 |
+
logger.info(f"Video created:{output_vid_path}");return output_vid_path
|
418 |
+
else:logger.error("Final clip invalid. No write.");return None
|
419 |
+
except Exception as e_vid_write:logger.error(f"Video write error:{e_vid_write}",exc_info=True);return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
finally:
|
421 |
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
|
422 |
+
all_clips_to_close_list = processed_clips + ([narration_clip_mvpy] if narration_clip_mvpy else []) + ([final_composite_video_clip] if final_composite_video_clip else [])
|
423 |
+
for clip_to_close_item in all_clips_to_close_list:
|
424 |
+
if clip_to_close_item and hasattr(clip_to_close_item, 'close'):
|
425 |
+
try: clip_to_close_item.close()
|
426 |
+
except Exception as e_final_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_to_close_item).__name__} - {e_final_close}")
|
|
|
|
|
|
|
|