Update core/visual_engine.py
Browse files- core/visual_engine.py +212 -170
core/visual_engine.py
CHANGED
@@ -61,37 +61,40 @@ class VisualEngine:
|
|
61 |
self.output_dir = output_dir
|
62 |
os.makedirs(self.output_dir, exist_ok=True)
|
63 |
|
64 |
-
self.font_filename = "arial.ttf"
|
65 |
font_paths_to_try = [
|
66 |
self.font_filename,
|
67 |
-
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
68 |
-
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
|
69 |
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
|
70 |
f"C:/Windows/Fonts/arial.ttf", # Windows
|
71 |
-
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
|
72 |
]
|
73 |
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
|
74 |
self.font_size_pil = 20
|
75 |
self.video_overlay_font_size = 30
|
76 |
self.video_overlay_font_color = 'white'
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
try:
|
80 |
if self.font_path_pil:
|
81 |
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
|
82 |
logger.info(f"Pillow font loaded: {self.font_path_pil}.")
|
83 |
-
else:
|
84 |
self.font = ImageFont.load_default()
|
85 |
-
logger.warning("Custom Pillow font not found
|
86 |
-
self.font_size_pil = 10 # Default font is
|
87 |
-
except IOError as e_font:
|
88 |
-
logger.error(f"Pillow font loading IOError for '{self.font_path_pil
|
89 |
self.font = ImageFont.load_default()
|
90 |
self.font_size_pil = 10
|
91 |
|
92 |
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
|
93 |
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
|
94 |
-
self.video_frame_size = (1280, 720)
|
95 |
|
96 |
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
|
97 |
self.elevenlabs_client = None
|
@@ -108,7 +111,7 @@ class VisualEngine:
|
|
108 |
|
109 |
def set_openai_api_key(self,k):
|
110 |
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
|
111 |
-
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled
|
112 |
|
113 |
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
|
114 |
self.elevenlabs_api_key=api_key
|
@@ -119,39 +122,38 @@ class VisualEngine:
|
|
119 |
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
|
120 |
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
|
121 |
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
|
122 |
-
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no
|
123 |
|
124 |
def set_pexels_api_key(self,k):
|
125 |
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
|
126 |
-
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled
|
127 |
|
128 |
def set_runway_api_key(self, k):
|
129 |
self.runway_api_key = k
|
130 |
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
|
131 |
try:
|
132 |
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
|
133 |
-
self.USE_RUNWAYML = True
|
134 |
logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
|
135 |
except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
|
136 |
-
elif k:
|
137 |
self.USE_RUNWAYML = True
|
138 |
logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
|
139 |
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
|
140 |
|
141 |
def _get_text_dimensions(self,text_content,font_obj):
|
142 |
-
if not text_content: return 0,self.font_size_pil
|
143 |
try:
|
144 |
if hasattr(font_obj,'getbbox'):
|
145 |
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
|
146 |
-
return w, h if h > 0 else
|
147 |
elif hasattr(font_obj,'getsize'):
|
148 |
w,h=font_obj.getsize(text_content)
|
149 |
-
return w, h if h > 0 else
|
150 |
-
else: return int(len(text_content)*
|
151 |
except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
|
152 |
|
153 |
def _create_placeholder_image_content(self,text_description,filename,size=None):
|
154 |
-
# (No significant changes from your previous correct version)
|
155 |
if size is None: size = self.video_frame_size
|
156 |
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
|
157 |
if not text_description: text_description="(Placeholder: No prompt text)"
|
@@ -163,7 +165,7 @@ class VisualEngine:
|
|
163 |
if current_line: lines.append(current_line.strip());
|
164 |
current_line=word+" "
|
165 |
if current_line.strip(): lines.append(current_line.strip())
|
166 |
-
if not lines and text_description: lines.append(text_description[:int(max_w//(self.
|
167 |
elif not lines: lines.append("(Placeholder Text Error)")
|
168 |
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
|
169 |
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
|
@@ -179,9 +181,8 @@ class VisualEngine:
|
|
179 |
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
|
180 |
|
181 |
def _search_pexels_image(self, query, output_filename_base):
|
182 |
-
# (No significant changes from your previous correct version)
|
183 |
if not self.USE_PEXELS or not self.pexels_api_key: return None
|
184 |
-
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "
|
185 |
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
|
186 |
filepath = os.path.join(self.output_dir, pexels_filename)
|
187 |
try:
|
@@ -202,11 +203,20 @@ class VisualEngine:
|
|
202 |
if not self.USE_RUNWAYML or not self.runway_api_key:
|
203 |
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
|
204 |
return None
|
205 |
-
output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") #
|
206 |
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
|
207 |
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
|
208 |
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
|
209 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
|
211 |
logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
|
212 |
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
|
@@ -214,15 +224,16 @@ class VisualEngine:
|
|
214 |
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
|
215 |
if size is None: size = self.video_frame_size
|
216 |
filepath = os.path.join(self.output_dir, filename)
|
217 |
-
txt_clip =
|
218 |
-
bg_color='black', size=size, method='caption').set_duration(duration)
|
219 |
try:
|
220 |
-
txt_clip
|
|
|
|
|
221 |
logger.info(f"Placeholder video saved: {filepath}")
|
222 |
return filepath
|
223 |
except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
|
224 |
finally:
|
225 |
-
if hasattr(txt_clip, 'close'): txt_clip.close()
|
226 |
|
227 |
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
|
228 |
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
|
@@ -238,22 +249,18 @@ class VisualEngine:
|
|
238 |
)
|
239 |
if video_path and os.path.exists(video_path):
|
240 |
asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
|
241 |
-
return asset_info
|
242 |
-
else:
|
243 |
-
logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
|
244 |
-
asset_info['error_message'] = "RunwayML video generation failed."
|
245 |
-
# Fall through to image generation
|
246 |
|
247 |
-
|
248 |
-
image_filename_with_ext = base_name + ".png" # Ensure .png for image
|
249 |
filepath = os.path.join(self.output_dir, image_filename_with_ext)
|
250 |
-
asset_info['type'] = 'image'
|
251 |
|
252 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
253 |
-
max_retries = 2
|
254 |
-
for
|
255 |
try:
|
256 |
-
logger.info(f"Attempt {
|
257 |
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
|
258 |
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
|
259 |
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
|
@@ -263,39 +270,37 @@ class VisualEngine:
|
|
263 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
264 |
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
|
265 |
asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
|
266 |
-
return asset_info
|
267 |
-
except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit: {e_rate}. Retrying..."); time.sleep(5 * (
|
268 |
except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
|
269 |
except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
|
270 |
except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
|
271 |
-
|
272 |
-
if asset_info['error']: logger.warning("DALL-E generation failed. Trying Pexels fallback...")
|
273 |
|
274 |
-
if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)):
|
275 |
pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
|
276 |
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
|
277 |
if pexels_path:
|
278 |
asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
|
279 |
return asset_info
|
280 |
-
|
281 |
-
|
|
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text) # Use the prompt that was attempted
|
287 |
placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
|
288 |
if placeholder_path:
|
289 |
asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
|
290 |
-
|
291 |
-
|
292 |
-
asset_info['error_message'] = (
|
293 |
-
return asset_info
|
294 |
|
295 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
296 |
-
# (No significant changes from your previous correct version, ensure error handling is robust)
|
297 |
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
|
298 |
-
logger.info("ElevenLabs conditions not met
|
299 |
return None
|
300 |
audio_filepath = os.path.join(self.output_dir, output_filename)
|
301 |
try:
|
@@ -312,13 +317,12 @@ class VisualEngine:
|
|
312 |
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
|
313 |
else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None
|
314 |
|
315 |
-
if audio_stream_method:
|
316 |
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
|
317 |
-
if self.elevenlabs_voice_settings
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
elif self.elevenlabs_voice_settings : voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
|
322 |
|
323 |
audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
|
324 |
with open(audio_filepath, "wb") as f:
|
@@ -336,153 +340,191 @@ class VisualEngine:
|
|
336 |
|
337 |
processed_moviepy_clips = []
|
338 |
narration_audio_clip = None
|
339 |
-
|
340 |
-
|
341 |
-
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}.
|
342 |
|
343 |
for i, asset_info in enumerate(asset_data_list):
|
344 |
asset_path = asset_info.get('path')
|
345 |
asset_type = asset_info.get('type')
|
346 |
-
target_scene_duration = asset_info.get('duration', 4.5)
|
347 |
scene_num = asset_info.get('scene_num', i + 1)
|
348 |
key_action = asset_info.get('key_action', '')
|
349 |
|
350 |
-
logger.info(f"Processing
|
351 |
|
352 |
if not (asset_path and os.path.exists(asset_path)):
|
353 |
-
logger.warning(f"Asset not found
|
354 |
-
continue
|
355 |
if target_scene_duration <= 0:
|
356 |
-
logger.warning(f"
|
357 |
-
continue
|
358 |
|
359 |
-
|
360 |
try:
|
361 |
if asset_type == 'image':
|
362 |
-
logger.debug(f"S{scene_num}: Loading image asset from {asset_path}")
|
363 |
pil_img = Image.open(asset_path)
|
364 |
-
logger.debug(f"S{scene_num}:
|
365 |
|
366 |
-
# Ensure image is RGBA for consistent
|
367 |
-
if pil_img.mode != 'RGBA'
|
368 |
-
pil_img = pil_img.convert('RGBA') # Convert to RGBA to handle transparency uniformly
|
369 |
|
370 |
-
|
|
|
371 |
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
|
372 |
-
|
373 |
-
logger.debug(f"S{scene_num}:
|
374 |
-
|
375 |
-
# Create an RGBA canvas, paste the (potentially RGBA) image onto it
|
376 |
-
canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) # Fully transparent
|
377 |
-
xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
|
378 |
-
canvas_rgba.paste(img_copy, (xo, yo), img_copy) # Paste using image's own alpha
|
379 |
-
logger.debug(f"S{scene_num}: Image pasted onto RGBA canvas.")
|
380 |
-
|
381 |
-
# Now create a final RGB canvas and paste the RGBA canvas onto it, effectively blending alpha
|
382 |
-
final_rgb_canvas = Image.new("RGB", self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5))) # Dark background
|
383 |
-
final_rgb_canvas.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Use alpha channel of canvas_rgba as mask
|
384 |
-
|
385 |
-
debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_canvas_scene_{scene_num}.png")
|
386 |
-
try: final_rgb_canvas.save(debug_canvas_path); logger.info(f"DEBUG: Saved final RGB canvas for scene {scene_num} to {debug_canvas_path}")
|
387 |
-
except Exception as e_save_canvas: logger.error(f"DEBUG: Failed to save final RGB canvas for scene {scene_num}: {e_save_canvas}")
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array for ImageClip is empty! Skipping."); continue
|
392 |
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
-
|
|
|
|
|
|
|
397 |
try: # Ken Burns
|
398 |
end_scale = random.uniform(1.03, 1.08)
|
399 |
-
|
400 |
logger.debug(f"S{scene_num}: Ken Burns effect applied.")
|
401 |
-
except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False)
|
|
|
|
|
402 |
|
403 |
elif asset_type == 'video':
|
404 |
logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
-
if current_clip_for_scene.size != list(self.video_frame_size):
|
422 |
-
logger.debug(f"S{scene_num}: Resizing video clip from {current_clip_for_scene.size} to {self.video_frame_size}")
|
423 |
-
current_clip_for_scene = current_clip_for_scene.resize(self.video_frame_size)
|
424 |
-
|
425 |
-
# Only close source_video_clip if it's different from what we are keeping (e.g., after subclip)
|
426 |
-
# And if it's not the same object as current_clip_for_scene
|
427 |
-
if source_video_clip is not current_clip_for_scene and hasattr(source_video_clip, 'close'):
|
428 |
-
source_video_clip.close()
|
429 |
-
logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_clip_for_scene.duration:.2f}s")
|
430 |
|
431 |
else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
|
432 |
-
|
433 |
-
|
|
|
434 |
logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
|
435 |
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
|
436 |
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
|
437 |
if text_overlay_duration > 0:
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
|
|
|
|
446 |
|
447 |
-
if
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
transition_duration = 0.75
|
457 |
try:
|
458 |
-
if
|
459 |
-
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
-
if
|
463 |
-
|
|
|
|
|
|
|
|
|
464 |
|
465 |
-
if overall_narration_path and os.path.exists(overall_narration_path) and
|
466 |
try:
|
467 |
narration_audio_clip = AudioFileClip(overall_narration_path)
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
elif final_composite_clip.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
|
474 |
|
475 |
-
if
|
476 |
output_path = os.path.join(self.output_dir, output_filename)
|
477 |
-
logger.info(f"
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
484 |
finally:
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
|
|
|
|
|
61 |
self.output_dir = output_dir
|
62 |
os.makedirs(self.output_dir, exist_ok=True)
|
63 |
|
64 |
+
self.font_filename = "arial.ttf" # Or a more reliably found font like "DejaVuSans-Bold.ttf"
|
65 |
font_paths_to_try = [
|
66 |
self.font_filename,
|
67 |
+
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
68 |
+
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
|
69 |
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
|
70 |
f"C:/Windows/Fonts/arial.ttf", # Windows
|
71 |
+
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
|
72 |
]
|
73 |
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
|
74 |
self.font_size_pil = 20
|
75 |
self.video_overlay_font_size = 30
|
76 |
self.video_overlay_font_color = 'white'
|
77 |
+
# For MoviePy TextClip, use font names ImageMagick knows. Check with `convert -list font`.
|
78 |
+
# 'Liberation-Sans-Bold' is a good default if available.
|
79 |
+
self.video_overlay_font = 'DejaVuSans-Bold' if 'dejavu' in (self.font_path_pil or '').lower() else 'Liberation-Sans-Bold'
|
80 |
+
|
81 |
|
82 |
try:
|
83 |
if self.font_path_pil:
|
84 |
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
|
85 |
logger.info(f"Pillow font loaded: {self.font_path_pil}.")
|
86 |
+
else:
|
87 |
self.font = ImageFont.load_default()
|
88 |
+
logger.warning("Custom Pillow font not found. Using default. Text rendering for placeholders might be basic.")
|
89 |
+
self.font_size_pil = 10 # Default Pillow font is small
|
90 |
+
except IOError as e_font:
|
91 |
+
logger.error(f"Pillow font loading IOError for '{self.font_path_pil or 'default'}': {e_font}. Using default.")
|
92 |
self.font = ImageFont.load_default()
|
93 |
self.font_size_pil = 10
|
94 |
|
95 |
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
|
96 |
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
|
97 |
+
self.video_frame_size = (1280, 720)
|
98 |
|
99 |
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
|
100 |
self.elevenlabs_client = None
|
|
|
111 |
|
112 |
def set_openai_api_key(self,k):
|
113 |
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
|
114 |
+
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
|
115 |
|
116 |
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
|
117 |
self.elevenlabs_api_key=api_key
|
|
|
122 |
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
|
123 |
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
|
124 |
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
|
125 |
+
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
|
126 |
|
127 |
def set_pexels_api_key(self,k):
|
128 |
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
|
129 |
+
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
|
130 |
|
131 |
def set_runway_api_key(self, k):
|
132 |
self.runway_api_key = k
|
133 |
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
|
134 |
try:
|
135 |
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
|
136 |
+
self.USE_RUNWAYML = True
|
137 |
logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
|
138 |
except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
|
139 |
+
elif k:
|
140 |
self.USE_RUNWAYML = True
|
141 |
logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
|
142 |
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
|
143 |
|
144 |
def _get_text_dimensions(self,text_content,font_obj):
|
145 |
+
if not text_content: return 0, (self.font.size if hasattr(self.font, 'size') else self.font_size_pil)
|
146 |
try:
|
147 |
if hasattr(font_obj,'getbbox'):
|
148 |
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
|
149 |
+
return w, h if h > 0 else font_obj.size
|
150 |
elif hasattr(font_obj,'getsize'):
|
151 |
w,h=font_obj.getsize(text_content)
|
152 |
+
return w, h if h > 0 else font_obj.size
|
153 |
+
else: return int(len(text_content)*font_obj.size*0.6), int(font_obj.size*1.2)
|
154 |
except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
|
155 |
|
156 |
def _create_placeholder_image_content(self,text_description,filename,size=None):
|
|
|
157 |
if size is None: size = self.video_frame_size
|
158 |
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
|
159 |
if not text_description: text_description="(Placeholder: No prompt text)"
|
|
|
165 |
if current_line: lines.append(current_line.strip());
|
166 |
current_line=word+" "
|
167 |
if current_line.strip(): lines.append(current_line.strip())
|
168 |
+
if not lines and text_description: lines.append(text_description[:int(max_w//(self._get_text_dimensions("A",self.font)[0] or 10))]+"..." if text_description else "(Text too long)")
|
169 |
elif not lines: lines.append("(Placeholder Text Error)")
|
170 |
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
|
171 |
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
|
|
|
181 |
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
|
182 |
|
183 |
def _search_pexels_image(self, query, output_filename_base):
|
|
|
184 |
if not self.USE_PEXELS or not self.pexels_api_key: return None
|
185 |
+
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} # Request higher quality
|
186 |
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
|
187 |
filepath = os.path.join(self.output_dir, pexels_filename)
|
188 |
try:
|
|
|
203 |
if not self.USE_RUNWAYML or not self.runway_api_key:
|
204 |
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
|
205 |
return None
|
206 |
+
output_video_filename = scene_identifier_filename_base.replace(".png", "_runway.mp4") # More specific extension
|
207 |
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
|
208 |
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
|
209 |
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
|
210 |
+
# Example:
|
211 |
+
# if self.runway_client:
|
212 |
+
# try:
|
213 |
+
# # result = self.runway_client.generate(text=prompt_text, duration=target_duration_seconds, seed_image=input_image_path)
|
214 |
+
# # result.save(output_video_filepath)
|
215 |
+
# # return output_video_filepath
|
216 |
+
# except Exception as e_runway:
|
217 |
+
# logger.error(f"Actual RunwayML generation error: {e_runway}", exc_info=True)
|
218 |
+
# return None
|
219 |
+
# else: logger.warning("RunwayML client not initialized (placeholder).")
|
220 |
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
|
221 |
logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
|
222 |
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
|
|
|
224 |
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
|
225 |
if size is None: size = self.video_frame_size
|
226 |
filepath = os.path.join(self.output_dir, filename)
|
227 |
+
txt_clip = None # Initialize
|
|
|
228 |
try:
|
229 |
+
txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
|
230 |
+
bg_color='black', size=size, method='caption').set_duration(duration)
|
231 |
+
txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
|
232 |
logger.info(f"Placeholder video saved: {filepath}")
|
233 |
return filepath
|
234 |
except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
|
235 |
finally:
|
236 |
+
if txt_clip and hasattr(txt_clip, 'close'): txt_clip.close()
|
237 |
|
238 |
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
|
239 |
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
|
|
|
249 |
)
|
250 |
if video_path and os.path.exists(video_path):
|
251 |
asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
|
252 |
+
return asset_info
|
253 |
+
else: logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image."); asset_info['error_message'] = "RunwayML video generation failed."
|
|
|
|
|
|
|
254 |
|
255 |
+
image_filename_with_ext = base_name + ".png"
|
|
|
256 |
filepath = os.path.join(self.output_dir, image_filename_with_ext)
|
257 |
+
asset_info['type'] = 'image'
|
258 |
|
259 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
260 |
+
max_retries = 2; attempt_num = 0
|
261 |
+
for attempt_num in range(max_retries):
|
262 |
try:
|
263 |
+
logger.info(f"Attempt {attempt_num+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
|
264 |
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
|
265 |
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
|
266 |
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
|
|
|
270 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
271 |
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
|
272 |
asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
|
273 |
+
return asset_info # Success
|
274 |
+
except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit on attempt {attempt_num+1}: {e_rate}. Retrying..."); time.sleep(5 * (attempt_num + 1)); asset_info['error_message'] = str(e_rate)
|
275 |
except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
|
276 |
except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
|
277 |
except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
|
278 |
+
if asset_info['error']: logger.warning(f"DALL-E generation failed after {attempt_num+1} attempts. Trying Pexels fallback...")
|
|
|
279 |
|
280 |
+
if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)):
|
281 |
pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
|
282 |
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
|
283 |
if pexels_path:
|
284 |
asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
|
285 |
return asset_info
|
286 |
+
current_error_msg = asset_info.get('error_message', "")
|
287 |
+
asset_info['error_message'] = (current_error_msg + " Pexels search also failed or disabled.").strip()
|
288 |
+
if not asset_info['error']: logger.warning("Pexels search failed or was disabled (DALL-E not attempted).")
|
289 |
|
290 |
+
if asset_info['error']:
|
291 |
+
logger.warning("All primary generation methods failed. Using placeholder image.")
|
292 |
+
placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text)
|
|
|
293 |
placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
|
294 |
if placeholder_path:
|
295 |
asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
|
296 |
+
else:
|
297 |
+
current_error_msg = asset_info.get('error_message', "")
|
298 |
+
asset_info['error_message'] = (current_error_msg + " Placeholder creation also failed.").strip()
|
299 |
+
return asset_info
|
300 |
|
301 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
|
|
302 |
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
|
303 |
+
logger.info("ElevenLabs conditions not met. Skipping audio generation.")
|
304 |
return None
|
305 |
audio_filepath = os.path.join(self.output_dir, output_filename)
|
306 |
try:
|
|
|
317 |
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
|
318 |
else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None
|
319 |
|
320 |
+
if audio_stream_method: # Streaming logic
|
321 |
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
|
322 |
+
if self.elevenlabs_voice_settings:
|
323 |
+
if hasattr(self.elevenlabs_voice_settings, 'model_dump'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump() # Pydantic v2
|
324 |
+
elif hasattr(self.elevenlabs_voice_settings, 'dict'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict() # Pydantic v1
|
325 |
+
else: voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
|
|
|
326 |
|
327 |
audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
|
328 |
with open(audio_filepath, "wb") as f:
|
|
|
340 |
|
341 |
processed_moviepy_clips = []
|
342 |
narration_audio_clip = None
|
343 |
+
final_composite_clip_obj = None
|
344 |
+
|
345 |
+
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}.")
|
346 |
|
347 |
for i, asset_info in enumerate(asset_data_list):
|
348 |
asset_path = asset_info.get('path')
|
349 |
asset_type = asset_info.get('type')
|
350 |
+
target_scene_duration = asset_info.get('duration', 4.5) # Duration for this scene in the animatic
|
351 |
scene_num = asset_info.get('scene_num', i + 1)
|
352 |
key_action = asset_info.get('key_action', '')
|
353 |
|
354 |
+
logger.info(f"Processing S{scene_num}: Path='{asset_path}', Type='{asset_type}', TargetDur='{target_scene_duration}'s")
|
355 |
|
356 |
if not (asset_path and os.path.exists(asset_path)):
|
357 |
+
logger.warning(f"S{scene_num}: Asset not found at '{asset_path}'. Skipping."); continue
|
|
|
358 |
if target_scene_duration <= 0:
|
359 |
+
logger.warning(f"S{scene_num}: Invalid duration ({target_scene_duration}s). Skipping."); continue
|
|
|
360 |
|
361 |
+
current_scene_clip = None # The final MoviePy clip for this scene
|
362 |
try:
|
363 |
if asset_type == 'image':
|
|
|
364 |
pil_img = Image.open(asset_path)
|
365 |
+
logger.debug(f"S{scene_num}: Loaded image. Mode: {pil_img.mode}, Size: {pil_img.size}")
|
366 |
|
367 |
+
# 1. Ensure image is RGBA for consistent alpha handling during processing
|
368 |
+
img_rgba_source = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
|
|
|
369 |
|
370 |
+
# 2. Thumbnail the RGBA image
|
371 |
+
img_thumbnail = img_rgba_source.copy() # Work on a copy
|
372 |
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
|
373 |
+
img_thumbnail.thumbnail(self.video_frame_size, resample_filter)
|
374 |
+
logger.debug(f"S{scene_num}: Thumbnailed to: {img_thumbnail.size}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
# 3. Create a target-sized RGBA canvas (fully transparent)
|
377 |
+
canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
|
|
|
378 |
|
379 |
+
# 4. Paste the thumbnailed image (with its alpha) onto the center of the RGBA canvas
|
380 |
+
xo = (self.video_frame_size[0] - img_thumbnail.width) // 2
|
381 |
+
yo = (self.video_frame_size[1] - img_thumbnail.height) // 2
|
382 |
+
canvas_rgba.paste(img_thumbnail, (xo, yo), img_thumbnail) # Use img_thumbnail's alpha as mask
|
383 |
+
logger.debug(f"S{scene_num}: Image pasted onto transparent RGBA canvas.")
|
384 |
+
|
385 |
+
# 5. Create a final RGB image by pasting the RGBA canvas onto an opaque background
|
386 |
+
# This flattens transparency and ensures an RGB image for MoviePy.
|
387 |
+
final_rgb_image_for_moviepy = Image.new("RGB", self.video_frame_size, (0, 0, 0)) # Opaque black background
|
388 |
+
final_rgb_image_for_moviepy.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Paste using alpha from canvas_rgba
|
389 |
+
|
390 |
+
# --- CRITICAL DEBUG STEP: Save the image that will be fed to MoviePy ---
|
391 |
+
debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_FOR_MOVIEPY_scene_{scene_num}.png")
|
392 |
+
try:
|
393 |
+
final_rgb_image_for_moviepy.save(debug_canvas_path)
|
394 |
+
logger.info(f"DEBUG: Saved final RGB image for MoviePy (S{scene_num}) to {debug_canvas_path}")
|
395 |
+
except Exception as e_save_canvas:
|
396 |
+
logger.error(f"DEBUG: Failed to save final_rgb_image_for_moviepy (S{scene_num}): {e_save_canvas}")
|
397 |
+
|
398 |
+
frame_np = np.array(final_rgb_image_for_moviepy) # Should be (H, W, 3) dtype uint8
|
399 |
+
logger.debug(f"S{scene_num}: Converted to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}, Size: {frame_np.size}")
|
400 |
+
|
401 |
+
if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array is EMPTY. Skipping."); continue
|
402 |
+
if frame_np.ndim != 3 or frame_np.shape[2] != 3: logger.error(f"S{scene_num}: NumPy array has unexpected shape {frame_np.shape}. Skipping."); continue
|
403 |
+
if frame_np.dtype != np.uint8: frame_np = frame_np.astype(np.uint8); logger.warning(f"S{scene_num}: Converted NumPy array dtype to uint8.")
|
404 |
|
405 |
+
current_clip_base = ImageClip(frame_np, transparent=False).set_duration(target_scene_duration)
|
406 |
+
logger.debug(f"S{scene_num}: Base ImageClip created from NumPy array.")
|
407 |
+
|
408 |
+
current_scene_clip_with_fx = current_clip_base # Start with base
|
409 |
try: # Ken Burns
|
410 |
end_scale = random.uniform(1.03, 1.08)
|
411 |
+
current_scene_clip_with_fx = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration) if target_scene_duration > 0 else 1).set_position('center')
|
412 |
logger.debug(f"S{scene_num}: Ken Burns effect applied.")
|
413 |
+
except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False)
|
414 |
+
|
415 |
+
current_scene_clip = current_scene_clip_with_fx
|
416 |
|
417 |
elif asset_type == 'video':
|
418 |
logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
|
419 |
+
source_video_clip = None # Initialize
|
420 |
+
try:
|
421 |
+
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
|
422 |
+
|
423 |
+
temp_clip_for_video_asset = source_video_clip
|
424 |
+
if source_video_clip.duration != target_scene_duration:
|
425 |
+
if source_video_clip.duration > target_scene_duration:
|
426 |
+
temp_clip_for_video_asset = source_video_clip.subclip(0, target_scene_duration)
|
427 |
+
else: # Source is shorter
|
428 |
+
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
|
429 |
+
temp_clip_for_video_asset = source_video_clip.loop(duration=target_scene_duration)
|
430 |
+
else: # Let it play its native length, will be set to target_scene_duration for concat
|
431 |
+
temp_clip_for_video_asset = source_video_clip.set_duration(source_video_clip.duration)
|
432 |
+
logger.info(f"S{scene_num}: Video clip ({source_video_clip.duration:.2f}s) shorter than scene target ({target_scene_duration:.2f}s).")
|
433 |
+
|
434 |
+
current_scene_clip = temp_clip_for_video_asset.set_duration(target_scene_duration)
|
435 |
+
|
436 |
+
if current_scene_clip.size != list(self.video_frame_size):
|
437 |
+
logger.debug(f"S{scene_num}: Resizing video clip from {current_scene_clip.size} to {self.video_frame_size}")
|
438 |
+
current_scene_clip = current_scene_clip.resize(self.video_frame_size)
|
439 |
+
|
440 |
+
logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_scene_clip.duration:.2f}s")
|
441 |
+
except Exception as e_vid_load:
|
442 |
+
logger.error(f"S{scene_num}: Error loading/processing video file '{asset_path}': {e_vid_load}", exc_info=True)
|
443 |
+
if source_video_clip and hasattr(source_video_clip, 'close'): source_video_clip.close()
|
444 |
+
continue # Skip this asset
|
445 |
+
finally: # Close original source if it was opened and different from the final clip
|
446 |
+
if source_video_clip and source_video_clip is not current_scene_clip and hasattr(source_video_clip, 'close'):
|
447 |
+
source_video_clip.close()
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
|
451 |
+
|
452 |
+
# Add text overlay (common to both image and video assets)
|
453 |
+
if current_scene_clip and key_action:
|
454 |
logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
|
455 |
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
|
456 |
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
|
457 |
if text_overlay_duration > 0:
|
458 |
+
try:
|
459 |
+
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
|
460 |
+
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
|
461 |
+
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
|
462 |
+
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
|
463 |
+
kerning=-1, stroke_color='black', stroke_width=1.5
|
464 |
+
).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
|
465 |
+
current_scene_clip = CompositeVideoClip([current_scene_clip, txt_clip], size=self.video_frame_size, use_bgclip=True)
|
466 |
+
logger.debug(f"S{scene_num}: Text overlay composited.")
|
467 |
+
except Exception as e_txt: logger.error(f"S{scene_num}: Error creating TextClip or CompositeVideoClip for text: {e_txt}. Using clip without text.", exc_info=True)
|
468 |
|
469 |
+
if current_scene_clip:
|
470 |
+
processed_moviepy_clips.append(current_scene_clip)
|
471 |
+
logger.info(f"S{scene_num}: Asset successfully processed. Clip duration: {current_scene_clip.duration:.2f}s, Added to final list.")
|
472 |
+
|
473 |
+
except Exception as e_asset_proc:
|
474 |
+
logger.error(f"MAJOR Error processing asset for Scene {scene_num} ({asset_path}): {e_asset_proc}", exc_info=True)
|
475 |
+
# Ensure clip is closed if it was partially created
|
476 |
+
if current_scene_clip and hasattr(current_scene_clip, 'reader') and current_scene_clip.reader:
|
477 |
+
if hasattr(current_scene_clip, 'close'): current_scene_clip.close()
|
478 |
+
elif current_scene_clip and hasattr(current_scene_clip, 'close'):
|
479 |
+
current_scene_clip.close()
|
480 |
+
|
481 |
+
if not processed_moviepy_clips: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly."); return None
|
482 |
|
483 |
transition_duration = 0.75
|
484 |
try:
|
485 |
+
if not processed_moviepy_clips: logger.error("No clips to concatenate after processing loop."); return None
|
486 |
+
logger.info(f"Concatenating {len(processed_moviepy_clips)} processed clips.")
|
487 |
+
if len(processed_moviepy_clips) > 1:
|
488 |
+
final_composite_clip_obj = concatenate_videoclips(processed_moviepy_clips, padding = -transition_duration if transition_duration > 0 else 0, method="compose")
|
489 |
+
elif processed_moviepy_clips: final_composite_clip_obj = processed_moviepy_clips[0]
|
490 |
+
|
491 |
+
if not final_composite_clip_obj: logger.error("Concatenation resulted in a None clip."); return None
|
492 |
+
logger.info(f"Concatenated clip duration: {final_composite_clip_obj.duration:.2f}s")
|
493 |
|
494 |
+
if transition_duration > 0:
|
495 |
+
if final_composite_clip_obj.duration > transition_duration * 2:
|
496 |
+
final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
|
497 |
+
elif final_composite_clip_obj.duration > 0:
|
498 |
+
final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, min(transition_duration, final_composite_clip_obj.duration/2.0))
|
499 |
+
logger.debug("Applied fade in/out effects.")
|
500 |
|
501 |
+
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip_obj.duration > 0:
|
502 |
try:
|
503 |
narration_audio_clip = AudioFileClip(overall_narration_path)
|
504 |
+
logger.info(f"Adding narration. Video dur: {final_composite_clip_obj.duration:.2f}s, Audio dur: {narration_audio_clip.duration:.2f}s")
|
505 |
+
final_composite_clip_obj = final_composite_clip_obj.set_audio(narration_audio_clip) # Audio will be cut/padded to video duration
|
506 |
+
logger.info("Overall narration added to video.")
|
507 |
+
except Exception as e_audio: logger.error(f"Error adding overall narration: {e_audio}", exc_info=True)
|
508 |
+
elif final_composite_clip_obj.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
|
|
|
509 |
|
510 |
+
if final_composite_clip_obj and final_composite_clip_obj.duration > 0:
|
511 |
output_path = os.path.join(self.output_dir, output_filename)
|
512 |
+
logger.info(f"Attempting to write final animatic: {output_path} (Duration: {final_composite_clip_obj.duration:.2f}s)")
|
513 |
+
moviepy_logger_setting = 'bar' # Default to progress bar
|
514 |
+
|
515 |
+
final_composite_clip_obj.write_videofile(
|
516 |
+
output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
|
517 |
+
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
|
518 |
+
remove_temp=True, threads=os.cpu_count() or 2, logger=moviepy_logger_setting, bitrate="5000k"
|
519 |
+
)
|
520 |
+
logger.info(f"Animatic video successfully created: {output_path}")
|
521 |
+
return output_path
|
522 |
+
else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write file."); return None
|
523 |
+
except Exception as e_write: logger.error(f"Error during video file writing or final composition: {e_write}", exc_info=True); return None
|
524 |
finally:
|
525 |
+
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
|
526 |
+
clips_to_close = processed_moviepy_clips + ([narration_audio_clip] if narration_audio_clip else []) + ([final_composite_clip_obj] if final_composite_clip_obj else [])
|
527 |
+
for clip_obj in clips_to_close:
|
528 |
+
if clip_obj and hasattr(clip_obj, 'close'):
|
529 |
+
try: clip_obj.close()
|
530 |
+
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}")
|