Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from PIL import Image | |
import random | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
import torch | |
from compel import Compel, ReturnedEmbeddingsType | |
from huggingface_hub import login, HfApi | |
import os | |
# Add your Hugging Face token here or set it as an environment variable | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(token=HF_TOKEN) | |
# --- LoRA Mapping --- | |
LORA_MAPPING = { | |
"LoCon_d128-128_a16-32_n151_b4_lr=3e-04-5e-05_joycaption_seed=100-20": { | |
"repo": "rfyuan/waiREALCN_v14_LoRA", | |
"file": "LoCon_d128.128_a16.32_n151_b4-lr=3.00e-04-5.00e-05_joycaption_seed=100-20.safetensors" | |
}, | |
"LoCon_d128-128_a16-32_n151_b4_lr=5e-04-5e-05_joycaption_seed=100-18": { | |
"repo": "rfyuan/waiREALCN_v14_LoRA", | |
"file": "LoCon_d128.128_a16.32_n151_b4-lr=5.00e-04-5.00e-05_joycaption_seed=100-18.safetensors" | |
}, | |
} | |
# --- End LoRA Mapping --- | |
# --- Define a single repository for all dynamic LoRAs --- | |
DYNAMIC_LORA_REPO = "rfyuan/waiREALCN_v14_LoRA" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
pipe = None | |
compel = None | |
model_loaded = False | |
FAILED_LORAS = set() | |
AVAILABLE_DYNAMIC_LORAS = [] | |
try: | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"rfyuan/waiREALCN_v14_usdf", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device) | |
compel = Compel( | |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True], | |
truncate_long_prompts=False | |
) | |
model_loaded = True | |
except Exception as e: | |
print(f"Failed to load model: {e}") | |
# --- Fetch dynamic LoRAs from the specified repo at startup --- | |
if model_loaded: | |
print(f"Fetching available LoRAs from {DYNAMIC_LORA_REPO}...") | |
try: | |
api = HfApi() | |
repo_files = api.list_repo_files(repo_id=DYNAMIC_LORA_REPO, repo_type="model") | |
AVAILABLE_DYNAMIC_LORAS = [f for f in repo_files if f.endswith(".safetensors")] | |
print(f"Found {len(AVAILABLE_DYNAMIC_LORAS)} available LoRAs.") | |
except Exception as e: | |
print(f"Failed to fetch LoRAs from repo: {e}") | |
# --- PRE-DOWNLOADING ONLY FIXED LORAS AT STARTUP --- | |
if model_loaded: | |
print("Pre-downloading fixed LoRAs...") | |
for name, data in LORA_MAPPING.items(): | |
try: | |
pipe.load_lora_weights(data["repo"], weight_name=data["file"], adapter_name=name) | |
print(f"Successfully cached LoRA: {name}") | |
except Exception as e: | |
print(f"Failed to cache LoRA '{name}': {e}") | |
FAILED_LORAS.add(name) | |
print("Unloading all LoRAs from VRAM after caching.") | |
pipe.unload_lora_weights() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
def process_long_prompt(prompt, negative_prompt=""): | |
try: | |
conditioning, pooled = compel([prompt, negative_prompt]) | |
return conditioning, pooled | |
except Exception as e: | |
print(f"Long prompt processing failed: {e}, falling back to standard processing") | |
return None, None | |
# --- NEW FUNCTION TO REFRESH THE LORA LIST --- | |
def refresh_lora_list(): | |
print("Refreshing dynamic LoRA list...") | |
try: | |
api = HfApi() | |
repo_files = api.list_repo_files(repo_id=DYNAMIC_LORA_REPO, repo_type="model") | |
global AVAILABLE_DYNAMIC_LORAS | |
AVAILABLE_DYNAMIC_LORAS = [f for f in repo_files if f.endswith(".safetensors")] | |
print(f"Found {len(AVAILABLE_DYNAMIC_LORAS)} available LoRAs.") | |
return gr.update(choices=["None"] + AVAILABLE_DYNAMIC_LORAS) | |
except Exception as e: | |
print(f"Failed to refresh LoRAs from repo: {e}") | |
return gr.update() # Return an empty update to not change the UI on error | |
def select_dynamic_lora(lora_name): | |
if not lora_name or lora_name == "None": | |
return None, gr.update(visible=False), "No dynamic LoRA selected." | |
adapter_name = "dynamic_lora_cache_check" | |
try: | |
print(f"Pre-caching dynamic LoRA: {lora_name}") | |
pipe.load_lora_weights(DYNAMIC_LORA_REPO, weight_name=lora_name, adapter_name=adapter_name) | |
pipe.unload_lora_weights() | |
status_message = f"✅ LoRA '{lora_name}' is ready to use." | |
return lora_name, gr.update(label=lora_name, value=0.8, visible=True), status_message | |
except Exception as e: | |
print(f"Failed to pre-cache dynamic LoRA {lora_name}: {e}") | |
status_message = f"Error: Could not cache LoRA '{lora_name}'." | |
return None, gr.update(visible=False), status_message | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, dynamic_lora_name, dynamic_lora_weight, *lora_weights): | |
if not model_loaded: | |
error_img = Image.new('RGB', (width, height), color=(50, 50, 50)) | |
return error_img | |
pipe.unload_lora_weights() | |
pipe.disable_lora() | |
active_loras = [] | |
active_weights = [] | |
# 1. Load pre-defined LoRAs from sliders | |
for i, lora_name in enumerate(LORA_MAPPING.keys()): | |
if lora_name in FAILED_LORAS: | |
continue | |
weight = lora_weights[i] | |
if weight > 0: | |
try: | |
data = LORA_MAPPING[lora_name] | |
print(f"Loading pre-defined LoRA: {lora_name}") | |
pipe.load_lora_weights(data["repo"], weight_name=data["file"], adapter_name=lora_name) | |
active_loras.append(lora_name) | |
active_weights.append(weight) | |
except Exception as e: | |
print(f"Failed to load LoRA {lora_name} from cache: {e}") | |
continue | |
# Load the dynamic LoRA if selected | |
if dynamic_lora_name and dynamic_lora_name != "None" and dynamic_lora_weight > 0: | |
try: | |
adapter_name = "dynamic_lora" | |
print(f"Loading dynamic LoRA from {DYNAMIC_LORA_REPO}: {dynamic_lora_name}") | |
pipe.load_lora_weights(DYNAMIC_LORA_REPO, weight_name=dynamic_lora_name, adapter_name=adapter_name) | |
active_loras.append(adapter_name) | |
active_weights.append(dynamic_lora_weight) | |
except Exception as e: | |
print(f"Failed to load dynamic LoRA {dynamic_lora_name} from cache: {e}") | |
try: | |
# 2. Set the weights for all active adapters. | |
if active_loras: | |
print(f"Activating LoRAs: {list(zip(active_loras, active_weights))}") | |
pipe.set_adapters(active_loras, adapter_weights=active_weights) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# 3. Generate the image | |
use_long_prompt = len(prompt.split()) > 10 or len(prompt) > 200 | |
if use_long_prompt: | |
conditioning, pooled = process_long_prompt(prompt, negative_prompt) | |
if conditioning is not None: | |
output_image = pipe( | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return output_image | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return output_image | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
error_img = Image.new('RGB', (width, height), color=(0, 0, 0)) | |
return error_img | |
finally: | |
# 4. Unload all LoRAs to free up VRAM for the next user. | |
print("Unloading LoRAs to free VRAM.") | |
pipe.unload_lora_weights() | |
pipe.disable_lora() | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 768px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
if not model_loaded: | |
gr.Markdown("⚠️ **Model failed to load. Please check logs for errors.**") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
lines=3, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Group(): | |
gr.Markdown("### Select Dynamic LoRA") | |
with gr.Row(): | |
dynamic_lora_dropdown = gr.Dropdown( | |
choices=["None"] + AVAILABLE_DYNAMIC_LORAS, | |
value="None", | |
label="Available Dynamic LoRAs", | |
scale=4 | |
) | |
# --- NEW: Refresh button --- | |
refresh_button = gr.Button("Refresh", scale=1) | |
dynamic_lora_status = gr.Markdown() | |
dynamic_lora_state = gr.State(None) | |
with gr.Group(): | |
gr.Markdown("### LoRA Weights (0 = Off)") | |
lora_sliders = [] | |
for name in LORA_MAPPING.keys(): | |
if name in FAILED_LORAS: | |
continue | |
slider = gr.Slider( | |
label=name, | |
minimum=0.0, | |
maximum=2.0, | |
step=0.05, | |
value=0.0 | |
) | |
lora_sliders.append(slider) | |
dynamic_lora_slider = gr.Slider( | |
label="Dynamic LoRA", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.05, | |
value=0.8, | |
visible=False | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="(low quality, worst quality)1.2, very displeasing, 3d, watermark, signature, ugly, poorly drawn" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.1, | |
value=7, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=28, | |
step=1, | |
value=28, | |
) | |
# --- MODIFIED: Wire up the dynamic LoRA dropdown and refresh button --- | |
dynamic_lora_dropdown.change( | |
fn=select_dynamic_lora, | |
inputs=[dynamic_lora_dropdown], | |
outputs=[dynamic_lora_state, dynamic_lora_slider, dynamic_lora_status] | |
) | |
refresh_button.click( | |
fn=refresh_lora_list, | |
inputs=None, | |
outputs=[dynamic_lora_dropdown] | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, negative_prompt, seed, randomize_seed, | |
width, height, guidance_scale, num_inference_steps, | |
dynamic_lora_state, dynamic_lora_slider | |
] + lora_sliders, | |
outputs=[result] | |
) | |
demo.queue().launch() | |