add-push-functionality
#2
by
burtenshaw
HF Staff
- opened
- .python-version +1 -0
- README.md +57 -1
- app.py +270 -79
- pyproject.toml +15 -0
- requirements.txt +5 -2
- uv.lock +0 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.11
|
README.md
CHANGED
@@ -9,6 +9,62 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
12 |
+
hf_oauth: true
|
13 |
+
hf_oauth_scopes:
|
14 |
+
- write-repos
|
15 |
+
- manage-repos
|
16 |
---
|
17 |
|
18 |
+
# Semantic Text Deduplication Using SemHash
|
19 |
+
|
20 |
+
This Gradio application performs **semantic deduplication** on HuggingFace datasets using [SemHash](https://github.com/MinishLab/semhash) with [Model2Vec](https://github.com/MinishLab/model2vec) embeddings.
|
21 |
+
|
22 |
+
## Features
|
23 |
+
|
24 |
+
- **Two deduplication modes**:
|
25 |
+
- **Single dataset**: Find and remove duplicates within one dataset
|
26 |
+
- **Cross-dataset**: Remove entries from Dataset 2 that are similar to entries in Dataset 1
|
27 |
+
|
28 |
+
- **Customizable similarity threshold**: Control how strict the deduplication should be (0.0 = very loose, 1.0 = exact matches only)
|
29 |
+
|
30 |
+
- **Detailed results**: View statistics and examples of found duplicates with word-level differences highlighted
|
31 |
+
|
32 |
+
- **Hub Integration**: 🆕 **Push deduplicated datasets directly to the Hugging Face Hub** after logging in
|
33 |
+
|
34 |
+
## How to Use
|
35 |
+
|
36 |
+
### 1. Choose Deduplication Type
|
37 |
+
- **Cross-dataset**: Useful for removing training data contamination from test sets
|
38 |
+
- **Single dataset**: Clean up duplicate entries within a single dataset
|
39 |
+
|
40 |
+
### 2. Configure Datasets
|
41 |
+
- Enter the HuggingFace dataset names (e.g., `SetFit/amazon_massive_scenario_en-US`)
|
42 |
+
- Specify the dataset splits (e.g., `train`, `test`, `validation`)
|
43 |
+
- Set the text column name (usually `text`, `sentence`, or `content`)
|
44 |
+
|
45 |
+
### 3. Set Similarity Threshold
|
46 |
+
- **0.9** (default): Good balance between precision and recall
|
47 |
+
- **Higher values** (0.95-0.99): More conservative, only removes very similar texts
|
48 |
+
- **Lower values** (0.7-0.85): More aggressive, may remove semantically similar but different texts
|
49 |
+
|
50 |
+
### 4. Run Deduplication
|
51 |
+
Click **"Deduplicate"** to start the process. You'll see:
|
52 |
+
- Loading progress for datasets
|
53 |
+
- Deduplication progress
|
54 |
+
- Results with statistics and example duplicates
|
55 |
+
|
56 |
+
### 5. Push to Hub (New!)
|
57 |
+
After deduplication completes:
|
58 |
+
1. **Log in** with your Hugging Face account using the login button
|
59 |
+
2. Enter a **dataset name** for your cleaned dataset
|
60 |
+
3. Click **"Push to Hub"** to upload the deduplicated dataset
|
61 |
+
|
62 |
+
The dataset will be saved as `your-username/dataset-name` and be publicly available.
|
63 |
+
|
64 |
+
|
65 |
+
## Notes
|
66 |
+
|
67 |
+
- The app preserves all original columns from the datasets
|
68 |
+
- Only the text similarity is used for deduplication decisions
|
69 |
+
- Deduplicated datasets maintain the same structure as the original
|
70 |
+
- OAuth login is required only for pushing to the Hub, not for deduplication
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from datasets import load_dataset
|
3 |
from difflib import ndiff
|
|
|
4 |
|
5 |
from semhash import SemHash
|
6 |
from semhash.datamodels import DeduplicationResult
|
@@ -28,21 +29,30 @@ def display_word_differences(x: str, y: str) -> str:
|
|
28 |
return f"```\n{formatted_diff}\n```"
|
29 |
|
30 |
|
31 |
-
def load_dataset_texts(
|
|
|
|
|
32 |
"""Load texts from a specified dataset split."""
|
33 |
ds = load_dataset(dataset_name, split=dataset_split)
|
34 |
-
return [example[text_column] for example in ds]
|
35 |
|
36 |
|
37 |
-
def deduplicate_single_dataset(
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
# Build a SemHash index from the raw texts
|
40 |
semhash = SemHash.from_records(records=texts, model=model)
|
41 |
# Deduplicate the entire dataset
|
42 |
return semhash.self_deduplicate(threshold=threshold)
|
43 |
|
44 |
|
45 |
-
def deduplicate_two_datasets(
|
|
|
|
|
46 |
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
|
47 |
# Build SemHash index on dataset1
|
48 |
semhash = SemHash.from_records(records=texts1, model=model)
|
@@ -50,6 +60,22 @@ def deduplicate_two_datasets(texts1: list[str], texts2: list[str], threshold: fl
|
|
50 |
return semhash.deduplicate(records=texts2, threshold=threshold)
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def perform_deduplication(
|
54 |
deduplication_type: str,
|
55 |
dataset1_name: str,
|
@@ -59,7 +85,7 @@ def perform_deduplication(
|
|
59 |
dataset2_split: str = "",
|
60 |
dataset2_text_column: str = "",
|
61 |
threshold: float = default_threshold,
|
62 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True)
|
63 |
):
|
64 |
"""
|
65 |
Perform deduplication on one or two datasets using SemHash. This function
|
@@ -69,117 +95,225 @@ def perform_deduplication(
|
|
69 |
threshold = float(threshold)
|
70 |
|
71 |
# Load Dataset 1
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
if deduplication_type == "Single dataset":
|
76 |
# Single-dataset deduplication
|
77 |
-
yield "Deduplicating within Dataset 1 (SemHash)...", ""
|
78 |
result = deduplicate_single_dataset(texts1, threshold=threshold)
|
79 |
|
80 |
-
# Sort all duplicates
|
81 |
for duprec in result.duplicates:
|
82 |
-
duprec.duplicates.sort(key=lambda x: x[1]
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Summarize results
|
85 |
num_duplicates = len(result.duplicates)
|
86 |
deduplicated_count = len(result.deduplicated)
|
87 |
total_docs = len(texts1)
|
88 |
-
|
89 |
-
result_text = (
|
90 |
-
f"**Total documents (Dataset 1):** {total_docs}\n\n"
|
91 |
-
f"**Duplicates found:** {num_duplicates}\n\n"
|
92 |
-
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
93 |
-
+ "-" * 50 + "\n\n"
|
94 |
-
)
|
95 |
|
96 |
-
#
|
|
|
97 |
if num_duplicates > 0:
|
98 |
-
result_text += "**Example duplicates:**\n\n"
|
99 |
-
|
100 |
# Only show duplicates that actually have near-duplicate records
|
101 |
-
duplicates_with_data = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
if duplicates_with_data:
|
|
|
|
|
103 |
for duprec in duplicates_with_data[:5]:
|
104 |
dup_text = duprec.record
|
105 |
orig_text, score = duprec.duplicates[0]
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
)
|
114 |
-
else:
|
115 |
-
result_text += "No near-duplicate details available.\n\n"
|
116 |
-
else:
|
117 |
-
result_text += "No duplicates found."
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
else:
|
122 |
# Cross-dataset deduplication
|
123 |
-
|
124 |
-
|
|
|
125 |
|
126 |
-
yield "Deduplicating Dataset 2 against Dataset 1 (SemHash)...", ""
|
127 |
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
|
128 |
|
129 |
-
# Sort duplicates
|
130 |
for duprec in result.duplicates:
|
131 |
-
duprec.duplicates.sort(key=lambda x: x[1]
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
num_duplicates = len(result.duplicates)
|
134 |
total_docs2 = len(texts2)
|
135 |
deduplicated_count = len(result.deduplicated)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
140 |
-
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
141 |
-
+ "-" * 50 + "\n\n"
|
142 |
-
)
|
143 |
-
|
144 |
if num_duplicates > 0:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
if duplicates_with_data:
|
|
|
|
|
150 |
for duprec in duplicates_with_data[:5]:
|
151 |
-
dup_text = duprec.record
|
152 |
orig_text, score = duprec.duplicates[0]
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
160 |
)
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
except Exception as e:
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
|
173 |
# --- Gradio App ---
|
174 |
-
with gr.Blocks(
|
175 |
-
gr.
|
|
|
|
|
176 |
gr.Markdown("""
|
177 |
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
|
178 |
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
|
179 |
You can adjust the similarity threshold to control the strictness of the deduplication.
|
180 |
|
181 |
-
**NOTE**: This demo runs on a free CPU backend, so it may be slow for large datasets.
|
182 |
-
For faster results, please run the code locally.
|
183 |
""")
|
184 |
|
185 |
deduplication_type = gr.Radio(
|
@@ -190,28 +324,76 @@ with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; over
|
|
190 |
|
191 |
with gr.Row():
|
192 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
193 |
-
dataset1_split = gr.Textbox(
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
|
196 |
dataset2_inputs = gr.Column(visible=True)
|
197 |
with dataset2_inputs:
|
198 |
with gr.Row():
|
199 |
-
dataset2_name = gr.Textbox(
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
threshold = gr.Slider(
|
|
|
|
|
204 |
|
205 |
with gr.Row():
|
206 |
-
compute_button = gr.Button("Deduplicate")
|
207 |
|
208 |
status_output = gr.Markdown(elem_id="status_output")
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
def update_visibility(choice: str):
|
212 |
return gr.update(visible=(choice == "Cross-dataset"))
|
213 |
|
214 |
-
deduplication_type.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
compute_button.click(
|
217 |
fn=perform_deduplication,
|
@@ -225,7 +407,16 @@ with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; over
|
|
225 |
dataset2_text_column,
|
226 |
threshold,
|
227 |
],
|
228 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
)
|
230 |
|
231 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from datasets import load_dataset, Dataset
|
3 |
from difflib import ndiff
|
4 |
+
import pandas as pd
|
5 |
|
6 |
from semhash import SemHash
|
7 |
from semhash.datamodels import DeduplicationResult
|
|
|
29 |
return f"```\n{formatted_diff}\n```"
|
30 |
|
31 |
|
32 |
+
def load_dataset_texts(
|
33 |
+
dataset_name: str, dataset_split: str, text_column: str
|
34 |
+
) -> tuple[list[str], Dataset]:
|
35 |
"""Load texts from a specified dataset split."""
|
36 |
ds = load_dataset(dataset_name, split=dataset_split)
|
37 |
+
return [example[text_column] for example in ds], ds
|
38 |
|
39 |
|
40 |
+
def deduplicate_single_dataset(
|
41 |
+
texts: list[str], threshold: float
|
42 |
+
) -> DeduplicationResult:
|
43 |
+
"""
|
44 |
+
Deduplicate within a single dataset using SemHash, treating each text
|
45 |
+
as a raw string record.
|
46 |
+
"""
|
47 |
# Build a SemHash index from the raw texts
|
48 |
semhash = SemHash.from_records(records=texts, model=model)
|
49 |
# Deduplicate the entire dataset
|
50 |
return semhash.self_deduplicate(threshold=threshold)
|
51 |
|
52 |
|
53 |
+
def deduplicate_two_datasets(
|
54 |
+
texts1: list[str], texts2: list[str], threshold: float
|
55 |
+
) -> DeduplicationResult:
|
56 |
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
|
57 |
# Build SemHash index on dataset1
|
58 |
semhash = SemHash.from_records(records=texts1, model=model)
|
|
|
60 |
return semhash.deduplicate(records=texts2, threshold=threshold)
|
61 |
|
62 |
|
63 |
+
def create_deduplicated_dataset(
|
64 |
+
original_dataset: Dataset, deduplicated_texts: list[str], text_column: str
|
65 |
+
) -> Dataset:
|
66 |
+
"""Create a new dataset with only the deduplicated texts."""
|
67 |
+
# Create a mapping from text to original row
|
68 |
+
text_to_row = {row[text_column]: row for row in original_dataset}
|
69 |
+
|
70 |
+
# Build new dataset with deduplicated texts
|
71 |
+
deduplicated_rows = []
|
72 |
+
for text in deduplicated_texts:
|
73 |
+
if text in text_to_row:
|
74 |
+
deduplicated_rows.append(text_to_row[text])
|
75 |
+
|
76 |
+
return Dataset.from_list(deduplicated_rows)
|
77 |
+
|
78 |
+
|
79 |
def perform_deduplication(
|
80 |
deduplication_type: str,
|
81 |
dataset1_name: str,
|
|
|
85 |
dataset2_split: str = "",
|
86 |
dataset2_text_column: str = "",
|
87 |
threshold: float = default_threshold,
|
88 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
89 |
):
|
90 |
"""
|
91 |
Perform deduplication on one or two datasets using SemHash. This function
|
|
|
95 |
threshold = float(threshold)
|
96 |
|
97 |
# Load Dataset 1
|
98 |
+
texts1, dataset1 = load_dataset_texts(
|
99 |
+
dataset1_name, dataset1_split, dataset1_text_column
|
100 |
+
)
|
101 |
|
102 |
if deduplication_type == "Single dataset":
|
103 |
# Single-dataset deduplication
|
|
|
104 |
result = deduplicate_single_dataset(texts1, threshold=threshold)
|
105 |
|
106 |
+
# Sort all duplicates by score (ascending for least similar)
|
107 |
for duprec in result.duplicates:
|
108 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
109 |
+
|
110 |
+
# Create deduplicated dataset
|
111 |
+
deduplicated_dataset = create_deduplicated_dataset(
|
112 |
+
dataset1, result.deduplicated, dataset1_text_column
|
113 |
+
)
|
114 |
|
115 |
# Summarize results
|
116 |
num_duplicates = len(result.duplicates)
|
117 |
deduplicated_count = len(result.deduplicated)
|
118 |
total_docs = len(texts1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
# Create examples table
|
121 |
+
examples_table = None
|
122 |
if num_duplicates > 0:
|
|
|
|
|
123 |
# Only show duplicates that actually have near-duplicate records
|
124 |
+
duplicates_with_data = [
|
125 |
+
duprec for duprec in result.duplicates if duprec.duplicates
|
126 |
+
]
|
127 |
+
|
128 |
+
# sort duplicates by score (ascending for least similar)
|
129 |
+
for duprec in result.duplicates:
|
130 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
131 |
+
|
132 |
if duplicates_with_data:
|
133 |
+
# Create table data for the 5 least similar examples
|
134 |
+
table_data = []
|
135 |
for duprec in duplicates_with_data[:5]:
|
136 |
dup_text = duprec.record
|
137 |
orig_text, score = duprec.duplicates[0]
|
138 |
+
table_data.append(
|
139 |
+
[
|
140 |
+
orig_text[:200] + "..."
|
141 |
+
if len(orig_text) > 200
|
142 |
+
else orig_text,
|
143 |
+
dup_text[:200] + "..."
|
144 |
+
if len(dup_text) > 200
|
145 |
+
else dup_text,
|
146 |
+
f"{score:.4f}",
|
147 |
+
]
|
148 |
)
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
examples_table = pd.DataFrame(
|
151 |
+
table_data,
|
152 |
+
columns=["Original Text", "Duplicate Text", "Similarity Score"],
|
153 |
+
)
|
154 |
+
|
155 |
+
# Show success info with stats
|
156 |
+
gr.Info(
|
157 |
+
f"Deduplication completed! Found {num_duplicates} duplicates. "
|
158 |
+
f"Dataset reduced from {total_docs} to {deduplicated_count} unique documents."
|
159 |
+
)
|
160 |
+
|
161 |
+
# Return table with visibility update
|
162 |
+
if examples_table is not None and not examples_table.empty:
|
163 |
+
return deduplicated_dataset, gr.update(
|
164 |
+
visible=True, value=examples_table
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
return deduplicated_dataset, gr.update(visible=False)
|
168 |
|
169 |
else:
|
170 |
# Cross-dataset deduplication
|
171 |
+
texts2, dataset2 = load_dataset_texts(
|
172 |
+
dataset2_name, dataset2_split, dataset2_text_column
|
173 |
+
)
|
174 |
|
|
|
175 |
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
|
176 |
|
177 |
+
# Sort duplicates by score (ascending for least similar)
|
178 |
for duprec in result.duplicates:
|
179 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
180 |
+
|
181 |
+
# Create deduplicated dataset from dataset2
|
182 |
+
deduplicated_dataset = create_deduplicated_dataset(
|
183 |
+
dataset2, result.deduplicated, dataset2_text_column
|
184 |
+
)
|
185 |
|
186 |
num_duplicates = len(result.duplicates)
|
187 |
total_docs2 = len(texts2)
|
188 |
deduplicated_count = len(result.deduplicated)
|
189 |
|
190 |
+
# Create examples table
|
191 |
+
examples_table = None
|
|
|
|
|
|
|
|
|
|
|
192 |
if num_duplicates > 0:
|
193 |
+
# Again, only show duplicates that have records
|
194 |
+
duplicates_with_data = [
|
195 |
+
duprec for duprec in result.duplicates if duprec.duplicates
|
196 |
+
]
|
197 |
if duplicates_with_data:
|
198 |
+
# Create table data for the 5 least similar examples
|
199 |
+
table_data = []
|
200 |
for duprec in duplicates_with_data[:5]:
|
201 |
+
dup_text = duprec.record
|
202 |
orig_text, score = duprec.duplicates[0]
|
203 |
+
table_data.append(
|
204 |
+
[
|
205 |
+
orig_text[:200] + "..."
|
206 |
+
if len(orig_text) > 200
|
207 |
+
else orig_text,
|
208 |
+
dup_text[:200] + "..."
|
209 |
+
if len(dup_text) > 200
|
210 |
+
else dup_text,
|
211 |
+
f"{score:.4f}",
|
212 |
+
]
|
213 |
)
|
214 |
+
|
215 |
+
examples_table = pd.DataFrame(
|
216 |
+
table_data,
|
217 |
+
columns=[
|
218 |
+
"Original Text (Dataset 1)",
|
219 |
+
"Duplicate Text (Dataset 2)",
|
220 |
+
"Similarity Score",
|
221 |
+
],
|
222 |
+
)
|
223 |
+
|
224 |
+
# Show success info with stats
|
225 |
+
gr.Info(
|
226 |
+
f"Deduplication completed! Found {num_duplicates} duplicates in Dataset 2. "
|
227 |
+
f"Dataset reduced from {total_docs2} to {deduplicated_count} unique documents."
|
228 |
+
)
|
229 |
+
|
230 |
+
# Return table with visibility update
|
231 |
+
if examples_table is not None and not examples_table.empty:
|
232 |
+
return deduplicated_dataset, gr.update(
|
233 |
+
visible=True, value=examples_table
|
234 |
+
)
|
235 |
else:
|
236 |
+
return deduplicated_dataset, gr.update(visible=False)
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
gr.Error(f"An error occurred during deduplication: {str(e)}")
|
240 |
+
return None, gr.update(visible=False)
|
241 |
+
|
242 |
+
|
243 |
+
def push_to_hub(
|
244 |
+
deduplicated_dataset: Dataset,
|
245 |
+
output_dataset_name: str,
|
246 |
+
oauth_profile: gr.OAuthProfile | None,
|
247 |
+
oauth_token: gr.OAuthToken | None,
|
248 |
+
progress: gr.Progress = gr.Progress(),
|
249 |
+
) -> str:
|
250 |
+
"""Push the deduplicated dataset to Hugging Face Hub."""
|
251 |
+
if oauth_token is None:
|
252 |
+
raise gr.Error("Please log in with Hugging Face to push datasets to the Hub.")
|
253 |
+
|
254 |
+
if not output_dataset_name.strip():
|
255 |
+
raise gr.Error("Please provide a dataset name.")
|
256 |
|
257 |
+
if deduplicated_dataset is None:
|
258 |
+
raise gr.Error(
|
259 |
+
"No deduplicated dataset available. Please run deduplication first."
|
260 |
+
)
|
261 |
+
|
262 |
+
try:
|
263 |
+
progress(0.1, desc="Preparing dataset...")
|
264 |
+
|
265 |
+
# Determine the full dataset name (username/dataset_name)
|
266 |
+
username = oauth_profile.username if oauth_profile else None
|
267 |
+
if "/" not in output_dataset_name and username:
|
268 |
+
full_dataset_name = f"{username}/{output_dataset_name}"
|
269 |
+
else:
|
270 |
+
full_dataset_name = output_dataset_name
|
271 |
+
|
272 |
+
progress(0.3, desc="Pushing to Hub...")
|
273 |
+
|
274 |
+
# Push to hub using the OAuth token
|
275 |
+
deduplicated_dataset.push_to_hub(
|
276 |
+
full_dataset_name, token=oauth_token.token, private=False
|
277 |
+
)
|
278 |
+
|
279 |
+
progress(1.0, desc="Complete!")
|
280 |
+
|
281 |
+
gr.Info(
|
282 |
+
f"Successfully pushed deduplicated dataset with {len(deduplicated_dataset)} rows to the Hub!"
|
283 |
+
)
|
284 |
+
|
285 |
+
return (
|
286 |
+
f"✅ **Dataset published:** [{full_dataset_name}]"
|
287 |
+
f"(https://huggingface.co/datasets/{full_dataset_name})"
|
288 |
+
)
|
289 |
|
290 |
except Exception as e:
|
291 |
+
raise gr.Error(f"Failed to push dataset to Hub: {str(e)}")
|
292 |
+
|
293 |
+
|
294 |
+
def get_user_info(oauth_profile: gr.OAuthProfile | None) -> str:
|
295 |
+
"""Display user login status."""
|
296 |
+
if oauth_profile is None:
|
297 |
+
return "Not logged in. Please log in to push datasets to the Hub."
|
298 |
+
return f"Logged in as: **{oauth_profile.username}**"
|
299 |
+
|
300 |
+
|
301 |
+
def update_push_button_state(oauth_profile: gr.OAuthProfile | None):
|
302 |
+
"""Update the push button state based on login status."""
|
303 |
+
is_logged_in = oauth_profile is not None
|
304 |
+
return gr.update(interactive=is_logged_in)
|
305 |
|
306 |
|
307 |
# --- Gradio App ---
|
308 |
+
with gr.Blocks(
|
309 |
+
theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }"
|
310 |
+
) as demo:
|
311 |
+
gr.Markdown("# SemDedup-My-Dataset: Semantic Text Deduplication Using SemHash")
|
312 |
gr.Markdown("""
|
313 |
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
|
314 |
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
|
315 |
You can adjust the similarity threshold to control the strictness of the deduplication.
|
316 |
|
|
|
|
|
317 |
""")
|
318 |
|
319 |
deduplication_type = gr.Radio(
|
|
|
324 |
|
325 |
with gr.Row():
|
326 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
327 |
+
dataset1_split = gr.Textbox(
|
328 |
+
value=default_dataset1_split, label="Dataset 1 Split"
|
329 |
+
)
|
330 |
+
dataset1_text_column = gr.Textbox(
|
331 |
+
value=default_text_column, label="Text Column Name"
|
332 |
+
)
|
333 |
|
334 |
dataset2_inputs = gr.Column(visible=True)
|
335 |
with dataset2_inputs:
|
336 |
with gr.Row():
|
337 |
+
dataset2_name = gr.Textbox(
|
338 |
+
value=default_dataset_name, label="Dataset 2 Name"
|
339 |
+
)
|
340 |
+
dataset2_split = gr.Textbox(
|
341 |
+
value=default_dataset2_split, label="Dataset 2 Split"
|
342 |
+
)
|
343 |
+
dataset2_text_column = gr.Textbox(
|
344 |
+
value=default_text_column, label="Text Column Name"
|
345 |
+
)
|
346 |
|
347 |
+
threshold = gr.Slider(
|
348 |
+
0.0, 1.0, value=default_threshold, label="Similarity Threshold"
|
349 |
+
)
|
350 |
|
351 |
with gr.Row():
|
352 |
+
compute_button = gr.Button("Deduplicate", variant="primary")
|
353 |
|
354 |
status_output = gr.Markdown(elem_id="status_output")
|
355 |
+
|
356 |
+
# Examples table
|
357 |
+
examples_table = gr.Dataframe(
|
358 |
+
headers=["Original Text", "Duplicate Text", "Similarity Score"],
|
359 |
+
datatype=["str", "str", "str"],
|
360 |
+
)
|
361 |
+
|
362 |
+
# Hidden state to store the deduplicated dataset
|
363 |
+
deduplicated_dataset_state = gr.State()
|
364 |
+
|
365 |
+
# Output dataset configuration
|
366 |
+
gr.Markdown("## Push Deduplicated Dataset to Hub")
|
367 |
+
with gr.Row():
|
368 |
+
with gr.Column():
|
369 |
+
output_dataset_name = gr.Textbox(
|
370 |
+
label="Output Dataset Name",
|
371 |
+
placeholder="my-deduplicated-dataset",
|
372 |
+
info="Will be saved as username/dataset-name",
|
373 |
+
)
|
374 |
+
with gr.Column():
|
375 |
+
push_button = gr.Button(
|
376 |
+
"Push to Hub", variant="secondary", interactive=False
|
377 |
+
)
|
378 |
+
login_button = gr.LoginButton()
|
379 |
+
|
380 |
+
# Login section - moved below push to hub
|
381 |
+
with gr.Row():
|
382 |
+
user_info = gr.Markdown()
|
383 |
+
push_output = gr.Markdown()
|
384 |
|
385 |
def update_visibility(choice: str):
|
386 |
return gr.update(visible=(choice == "Cross-dataset"))
|
387 |
|
388 |
+
deduplication_type.change(
|
389 |
+
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
390 |
+
)
|
391 |
+
|
392 |
+
# Update user info and button state when page loads or login status changes
|
393 |
+
demo.load(get_user_info, inputs=None, outputs=user_info)
|
394 |
+
demo.load(update_push_button_state, inputs=None, outputs=push_button)
|
395 |
+
login_button.click(get_user_info, inputs=None, outputs=user_info)
|
396 |
+
login_button.click(update_push_button_state, inputs=None, outputs=push_button)
|
397 |
|
398 |
compute_button.click(
|
399 |
fn=perform_deduplication,
|
|
|
407 |
dataset2_text_column,
|
408 |
threshold,
|
409 |
],
|
410 |
+
outputs=[deduplicated_dataset_state, examples_table],
|
411 |
+
)
|
412 |
+
|
413 |
+
push_button.click(
|
414 |
+
fn=push_to_hub,
|
415 |
+
inputs=[
|
416 |
+
deduplicated_dataset_state,
|
417 |
+
output_dataset_name,
|
418 |
+
],
|
419 |
+
outputs=push_output,
|
420 |
)
|
421 |
|
422 |
demo.launch()
|
pyproject.toml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "semantic-deduplication"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.11"
|
7 |
+
dependencies = [
|
8 |
+
"datasets>=3.6.0",
|
9 |
+
"gradio[oauth]>=5.32.1",
|
10 |
+
"huggingface-hub>=0.32.3",
|
11 |
+
"model2vec>=0.5.0",
|
12 |
+
"numpy>=2.2.6",
|
13 |
+
"semhash>=0.3.0",
|
14 |
+
"tqdm>=4.67.1",
|
15 |
+
]
|
requirements.txt
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
-
|
2 |
-
numpy
|
3 |
datasets
|
|
|
|
|
|
|
|
|
4 |
tqdm
|
5 |
|
|
|
1 |
+
gradio
|
|
|
2 |
datasets
|
3 |
+
semhash
|
4 |
+
model2vec
|
5 |
+
huggingface_hub
|
6 |
+
numpy
|
7 |
tqdm
|
8 |
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|