OCRFlux / eval /eval_page_to_markdown_nanonets.py
mirnaresearch's picture
Initial commit for HF Space (no images)
ca5b08e
import os
import re
import json
import argparse
import nltk
import markdown2
from bs4 import BeautifulSoup
from tqdm import tqdm
from eval.parallel import parallel_process
def turn_header_to_h1(line):
# 检查是否是以一个或多个 '#' 开头的标题行
if line.lstrip().startswith('#'):
# 去掉开头的 '#' 和其后的空格
new_line = "# " + line.lstrip().lstrip('#').lstrip()
return new_line
else:
return line
def replace_single_dollar(markdown_text):
pattern = r'\$(.*?)\$'
def replace_with_brackets(match):
formula_content = match.group(1) # 获取匹配到的公式内容
return f'\\({formula_content}\\)'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
def replace_double_dollar(markdown_text):
pattern = r'\$\$(.*?)\$\$'
def replace_with_brackets(match):
formula_content = match.group(1)
return f'\\[{formula_content}\\]'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
def simplify_html_table(html_table):
# 使用 BeautifulSoup 解析 HTML
soup = BeautifulSoup(html_table, 'html.parser')
# 找到 <table> 标签
table = soup.find('table')
if not table:
raise ValueError("输入的 HTML 不包含有效的 <table> 标签")
# 创建一个新的 <table> 标签
new_table = BeautifulSoup('<table></table>', 'html.parser').table
# 提取所有行(包括 <thead> 和 <tbody> 中的行)
rows = table.find_all(['tr'], recursive=True)
for row in rows:
# 创建新的 <tr> 标签
new_row = soup.new_tag('tr')
# 处理每一行中的单元格
cells = row.find_all(['th', 'td'])
for cell in cells:
# 将 <th> 替换为 <td>
new_cell = soup.new_tag('td')
if cell.has_attr('rowspan'):
new_cell['rowspan'] = cell['rowspan']
if cell.has_attr('colspan'):
new_cell['colspan'] = cell['colspan']
new_cell.string = cell.get_text(strip=True) # 保留单元格内容
new_row.append(new_cell)
# 将新行添加到新表格中
new_table.append(new_row)
# 返回简化后的表格 HTML
return str(new_table)
def evaluate(pred, gt):
edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
return 1.0- edit_dist
def main():
parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument(
"--gt_file",
help="Ground truth file",
)
parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
args = parser.parse_args()
pred_data = {}
for file in os.listdir(args.workspace):
file_path = os.path.join(args.workspace, file)
pdf_name = file.split('.')[0] + ".pdf"
with open(file_path, "r") as f:
document_text = f.read()
document_text = replace_single_dollar(replace_double_dollar(document_text))
markdown_text_list = document_text.split("\n\n")
new_markdown_text_list = []
for text in markdown_text_list:
text = text.strip()
if (text.startswith("<watermark>") and text.endswith("</watermark>")) or (text.startswith("<img>") and text.endswith("</img>")) or (text.startswith("<page_number>") and text.endswith("</page_number>")) or (text.startswith("<signature>") and text.endswith("</signature>")):
continue
else:
html_text = str(markdown2.markdown(text,extras=["tables"]))
html_text = html_text.strip()
if html_text.startswith("<table>") and html_text.endswith("</table>"):
html_table = simplify_html_table(html_text)
new_markdown_text_list.append(html_table)
else:
text = turn_header_to_h1(text)
new_markdown_text_list.append(text)
pred_data[os.path.basename(pdf_name)] = "\n\n".join(new_markdown_text_list)
filename_list_en = []
filename_list_zh = []
gt_data = {}
with open(args.gt_file, "r") as f:
for line in f:
data = json.loads(line)
markdown = data['markdown']
pdf_name = data['pdf_name']
gt_data[pdf_name] = markdown
if data['language'] == 'en':
filename_list_en.append(pdf_name)
else:
filename_list_zh.append(pdf_name)
keys = list(gt_data.keys())
if args.n_jobs == 1:
scores = [evaluate(pred_data.get(filename, ''), gt_data.get(filename, '')) for filename in tqdm(keys)]
else:
inputs = [{'pred': pred_data.get(filename, ''), 'gt': gt_data.get(filename, '')} for filename in keys]
scores = parallel_process(inputs, evaluate, use_kwargs=True, n_jobs=args.n_jobs, front_num=1)
total_score_en = 0
total_num_en = 0
total_score_zh = 0
total_num_zh = 0
for filename, score in zip(keys, scores):
if filename in filename_list_en:
print(filename)
print(score)
print()
total_score_en += score
total_num_en += 1
elif filename in filename_list_zh:
total_score_zh += score
total_num_zh += 1
print(f"English: {total_score_en / total_num_en}")
print(f"Chinese: {total_score_zh / total_num_zh}")
print(f"Total: {sum(scores) / len(scores)}")
if __name__ == "__main__":
main()