mrfakename's picture
pt 1
597cecf
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import torch
import torch.nn.functional as F
from torch import nn
from x_transformers.x_transformers import RotaryEmbedding
from f5_tts.model.modules import (AdaLayerNormZero_Final,
ConvPositionEmbedding, DiTBlock, MMDiTBlock,
TimestepEmbedding, get_pos_embed_indices,
precompute_freqs_cis)
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
list_str_to_tensor, mask_from_frac_lengths)
# text embedding
class TextEmbedding(nn.Module):
def __init__(self, out_dim, text_num_embeds):
super().__init__()
self.text_embed = nn.Embedding(
text_num_embeds + 1, out_dim
) # will use 0 as filler token
self.precompute_max_pos = 1024
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(out_dim, self.precompute_max_pos),
persistent=False,
)
def forward(
self, text: int["b nt"], drop_text=False
) -> int["b nt d"]: # noqa: F722
text = text + 1
if drop_text:
text = torch.zeros_like(text)
text = self.text_embed(text)
# sinus pos emb
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
batch_text_len = text.shape[1]
pos_idx = get_pos_embed_indices(
batch_start, batch_text_len, max_pos=self.precompute_max_pos
)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
return text
# noised input & masked cond audio embedding
class AudioEmbedding(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear = nn.Linear(2 * in_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
def forward(
self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False
): # noqa: F722
if drop_audio_cond:
cond = torch.zeros_like(cond)
x = torch.cat((x, cond), dim=-1)
x = self.linear(x)
x = self.conv_pos_embed(x) + x
return x
# Transformer backbone using MM-DiT blocks
class MMDiT(nn.Module):
def __init__(
self,
*,
dim,
text_depth=4,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
text_num_embeds=256,
mel_dim=100,
checkpoint_activations=False,
text_encoder=True,
):
super().__init__()
self.time_embed = TimestepEmbedding(dim)
if text_encoder:
self.text_encoder = TextEncoder(
text_num_embeds=text_num_embeds,
text_dim=dim,
depth=text_depth,
heads=heads,
dim_head=dim_head,
ff_mult=ff_mult,
dropout=dropout,
)
else:
self.text_encoder = None
self.text_embed = TextEmbedding(dim, text_num_embeds)
self.audio_embed = AudioEmbedding(mel_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = nn.ModuleList(
[
MMDiTBlock(
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
ff_mult=ff_mult,
context_pre_only=i == depth - 1,
)
for i in range(depth)
]
)
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
self.checkpoint_activations = checkpoint_activations
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
text_mask: bool["b nt"] | None = None, # noqa: F722
):
batch = x.shape[0]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
if self.text_encoder is not None:
c = self.text_encoder(text, t, mask=text_mask, drop_text=drop_text)
else:
c = self.text_embed(text, drop_text=drop_text)
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
seq_len = x.shape[1]
text_len = text.shape[1]
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
# if mask is not None:
# rope_audio = self.rotary_embed.forward_from_seq_len(seq_len + 1)
# dummy_token = torch.zeros((x.shape[0], 1, x.shape[-1]), device=x.device, dtype=x.dtype)
# x = torch.cat([x, dummy_token], dim=1) # shape is now [b, nw+1, d]
# # pad the mask so that new dummy token is always masked out
# # mask: [b, nw] -> [b, nw+1]
# false_col = torch.zeros((x.shape[0], 1), dtype=torch.bool, device=x.device)
# mask = torch.cat([mask, false_col], dim=1)
# if text_mask is not None:
# rope_text = self.rotary_embed.forward_from_seq_len(text_len + 1)
# dummy_token = torch.zeros((c.shape[0], 1, c.shape[-1]), device=c.device, dtype=c.dtype)
# c = torch.cat([c, dummy_token], dim=1) # shape is now [b, nt+1, d]
# # pad the text mask so that new dummy token is always masked out
# # text_mask: [b, nt] -> [b, nt+1]
# false_col = torch.zeros((c.shape[0], 1), dtype=torch.bool, device=c.device)
# text_mask = torch.cat([text_mask, false_col], dim=1)
for block in self.transformer_blocks:
c, x = block(
x,
c,
t,
mask=mask,
src_mask=text_mask,
rope=rope_audio,
c_rope=rope_text,
)
x = self.norm_out(x, t)
output = self.proj_out(x)
return output
class TextEncoder(nn.Module):
def __init__(
self,
text_num_embeds: int,
text_dim: int = 512,
depth: int = 4,
heads: int = 8,
dim_head: int = 64,
ff_mult: int = 4,
dropout: float = 0.1,
):
"""
A simple text encoder: an embedding layer + multiple DiTBlocks or any other
transformer blocks for text-only self-attention.
"""
super().__init__()
# Embeddings
self.text_embed = TextEmbedding(text_dim, text_num_embeds)
self.rotary_embed = RotaryEmbedding(dim_head)
# Example stack of DiTBlocks or any custom blocks
self.transformer_blocks = nn.ModuleList(
[
DiTBlock(
dim=text_dim,
heads=heads,
dim_head=dim_head,
ff_mult=ff_mult,
dropout=dropout,
)
for _ in range(depth)
]
)
def forward(
self,
text: int["b nt"], # noqa: F821
time: float["b"] | float[""], # time step # noqa: F821 F722
mask: bool["b nt"] | None = None, # noqa: F821 F722
drop_text: bool = False,
):
"""
Encode text into hidden states of shape [b, nt, d].
"""
batch, seq_len, device = text.shape[0], text.shape[1], text.device
if drop_text:
text = torch.zeros_like(text)
# Basic embedding
hidden_states = self.text_embed(text, seq_len) # [b, nt, d]
# lens and mask
rope = self.rotary_embed.forward_from_seq_len(seq_len)
# Pass through self-attention blocks
for block in self.transformer_blocks:
# Here, you likely want standard self-attn, so no cross-attn
hidden_states = block(
x=hidden_states,
t=time, # no time embedding for the text encoder by default
mask=mask, # or pass a text mask if needed
rope=rope, # pass a rope if you want rotary embeddings for text
)
return hidden_states
if __name__ == "__main__":
from f5_tts.model.utils import get_tokenizer
bsz = 16
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
dataset_name = "Emilia_ZH_EN"
if tokenizer == "custom":
tokenizer_path = tokenizer_path
else:
tokenizer_path = dataset_name
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
text = ["hello world"] * bsz
text_lens = torch.ones((bsz,), dtype=torch.long) * len("hello world")
text_lens[-1] = 5
device = "cuda"
batch = bsz
time_embed = TimestepEmbedding(512).to(device)
# handle text as string
if isinstance(text, list):
if exists(vocab_char_map):
text = list_str_to_idx(text, vocab_char_map).to(device)
else:
text = list_str_to_tensor(text).to(device)
assert text.shape[0] == batch
time = torch.rand((batch,), device=device)
text_mask = lens_to_mask(text_lens).to(device)
# # test text encoder
# text_encoder = TextEncoder(
# text_num_embeds=vocab_size,
# text_dim=512,
# depth=4,
# heads=8,
# dim_head=64,
# ff_mult=4,
# dropout=0.1
# ).to('cuda')
# hidden_states = text_encoder(text, time_embed(time), mask)
# print(hidden_states.shape) # [bsz, seq_len, text_dim]
# test MMDiT
mel_dim = 80
model = MMDiT(
dim=512,
text_depth=4,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
text_num_embeds=vocab_size,
mel_dim=mel_dim,
).to(device)
x = torch.rand((batch, 100, mel_dim), device=device)
cond = torch.rand((batch, 100, mel_dim), device=device)
lens = torch.ones((batch,), dtype=torch.long) * 100
mask = lens_to_mask(lens).to(device)
output = model(
x,
cond,
text,
time,
drop_audio_cond=False,
drop_text=False,
mask=mask,
text_mask=text_mask,
)
print(output.shape) # [bsz, seq_len, mel_dim]