Murtuza Saifee
Multiple type of Loader RAG
a99c482
import streamlit as st
from langchain_community.document_loaders import TextLoader, PyPDFLoader, WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import tempfile
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"]="Multi Loader RAG"
# Streamlit app title
st.title("Multi Loader RAG")
# File upload and web link input
st.header("Upload Documents")
text_file = st.file_uploader("Upload a Text File", type=["txt"])
pdf_file = st.file_uploader("Upload a PDF File", type=["pdf"])
web_link = st.text_input("Enter a Web URL")
# Load documents function
def load_documents(text_file, pdf_file, web_link):
docs = []
# Load text file
if text_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as tmp_file:
tmp_file.write(text_file.getvalue())
tmp_file_path = tmp_file.name
text_loader = TextLoader(tmp_file_path)
docs.extend(text_loader.load())
os.remove(tmp_file_path)
# Load PDF file
if pdf_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.getvalue())
tmp_file_path = tmp_file.name
pdf_loader = PyPDFLoader(tmp_file_path)
docs.extend(pdf_loader.load())
os.remove(tmp_file_path)
# Load web content
if web_link:
web_loader = WebBaseLoader([web_link])
docs.extend(web_loader.load())
return docs
# Split documents function
def split_documents(docs, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
return text_splitter.split_documents(docs)
# Create FAISS vector store function
def create_vector_store(splits):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(splits, embeddings)
return vectorstore
# Main app logic
if st.button("Process Documents"):
if not (text_file or pdf_file or web_link):
st.error("Please upload at least one document or provide a web link.")
else:
with st.spinner("Processing documents..."):
# Load documents
documents = load_documents(text_file, pdf_file, web_link)
# Split documents
splits = split_documents(documents, 1000, 300)
# Create FAISS vector store
st.session_state.vector_store = create_vector_store(splits)
st.success("Documents processed and FAISS vector store created!")
st.header("Get Summary/Answer")
query = st.text_input("Enter your query")
if st.button("Search"):
if st.session_state.vector_store is None:
st.error("Please process documents first.")
elif not query:
st.error("Please enter a query.")
else:
with st.spinner("Searching..."):
# Create retriever and chain
retriever = st.session_state.vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
llm = OpenAI(temperature=0.6)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
# Execute query
result = qa_chain({"query": query})
# Display the result
st.markdown("### Answer:")
st.write(result["result"])