Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import ChromaPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "lodestones/Chroma1-HD" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = ChromaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, negative_prompt="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.0, num_inference_steps=40, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device).manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
num_images_per_prompt=1 | |
).images[0] | |
return image, seed | |
examples = [ | |
"A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done.", | |
"A dog eating pizza", | |
"The spirit of a tamagotchi wandering in San Francisco", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 760px; | |
} | |
#button{ | |
align-self: stretch; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Chroma1-HD | |
[Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD) is an 8.9B parameter text-to-image foundational model based on FLUX.1-schnell | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors" | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run", scale=1, elem_id="button") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.0, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=433, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=40, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
outputs=[result, seed], | |
fn=infer, | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.queue().launch() |