cb-api / lib /ocr_1.py
muryshev's picture
update
eeebb29
from PIL import Image, ImageFilter
import cv2
import pytesseract
from pytesseract import Output
from os import listdir
from os.path import isfile, join
import numpy as np
import json
import matplotlib.pyplot as plt
from pdf2image import convert_from_path
from matplotlib import pyplot as plt
import re
def processFiles(pdfs, verbose = False) :
images_per_pdf_2d = [convert_from_path(file) for file in pdfs]
images_per_pdf = []
docfilenames = []
pagenames = []
fileindices = []
for i in range(len(images_per_pdf_2d)) :
docfilenames.append(pdfs[i][:-4])
pageindices = []
for j in range(len(images_per_pdf_2d[i])) :
images_per_pdf.append(images_per_pdf_2d[i][j])
pagenames.append(pdfs[i][:-4] + '_page_' + str(j))
pageindices.append(len(pagenames) - 1)
# print(i, j, len(pagenames) - 1, pagenames[-1])
fileindices.append(pageindices)
gray_images_per_pdf_cropped = []
for i in range(len(images_per_pdf)) :
image = images_per_pdf[i]
crop = image.convert("L").crop((
750, 150, # left top point
1654, 850 # right bottom point
))
gray_images_per_pdf_cropped.append(crop)
texts = [pytesseract.image_to_string(image, lang='rus') for image in gray_images_per_pdf_cropped]
fulltexts = [pytesseract.image_to_string(image, lang='rus') for image in images_per_pdf]
cropped_images = gray_images_per_pdf_cropped
init_size = cropped_images[0].size
thresh_imgs = [
image.resize(
(init_size[0] //4, init_size[1] // 4)
).point(
lambda x: 0 if x < 220 else 255
).filter(
ImageFilter.MedianFilter(5)
).filter(
ImageFilter.MinFilter(15) #15
) for i,(name,image) in enumerate(zip(pagenames, cropped_images))
]
masks = thresh_imgs
masks_arr = [np.array(img) for img in masks]
mask_shape = masks_arr[0].shape
str_size = 7
masks = []
masks_bw = []
for name, mask in zip(pagenames, masks_arr):
cleaned_mask = mask.copy()
for iter in range(mask_shape[0] // str_size):
temp_mean = int(cleaned_mask[iter*str_size : iter*str_size + str_size, :].mean())
if (temp_mean < 49) or (temp_mean > 160):
cleaned_mask[iter*str_size : iter*str_size + str_size, :] = 255
vertical_threshold = 200
for i in range(mask_shape[1] // str_size + 1):
if (i*str_size + str_size) > mask_shape[1]:
temp_mean_vertical = int(cleaned_mask[:, i*str_size : mask_shape[1]].mean())
if temp_mean_vertical > vertical_threshold:
cleaned_mask[:, i*str_size : mask_shape[1]] = 255
else:
temp_mean_vertical = int(cleaned_mask[:, i*str_size : i*str_size + str_size].mean())
if temp_mean_vertical > vertical_threshold:
cleaned_mask[:, i*str_size : i*str_size + str_size] = 255
image = Image.fromarray(cleaned_mask).filter(
ImageFilter.MedianFilter(13)
).filter(
ImageFilter.MinFilter(25) #15
)
masks.append(image)
masks_bw.append(image.convert('1'))
masks_bw_arr = [np.array(img) for img in masks_bw]
# check which pages have address box: if there is no address box the mask is empty
addressexists = [bool((~mask_bw).sum()) for mask_bw in masks_bw_arr]
# this is a list of CB names that may be used in address
CBnames = [
'цб рф',
'центральный банк',
'центрального банка',
'банк россии',
'банка россии',
]
# check which pages have address box addressed to CB
toCB = []
for i in range(len(addressexists)) :
iftoCB = False
for j in range(len(CBnames)) :
if addressexists[i] and CBnames[j] in texts[i].lower() :
iftoCB = True
break
toCB.append(iftoCB)
# build 3-level list: file -> doc -> page
docindices = []
doctypes = []
for i in range(len(fileindices)) :
docs = []
types = []
pages = []
doctype = False
for j in range(len(fileindices[i])) :
index = fileindices[i][j]
ifaddress = addressexists[index]
iftoCB = toCB[index]
if ifaddress :
if len(pages) > 0 :
docs.append(pages)
types.append(doctype)
pages = []
doctype = iftoCB
pages.append(index)
docs.append(pages)
types.append(doctype)
docindices.append(docs)
doctypes.append(types)
cropped = cropped_images
orig_size = cropped[0].size
masks = [mask.convert('L').resize((orig_size)) for mask in masks]
if verbose :
for i in range(len(masks)) :
img = np.array(masks[i])
out = np.array(cropped[i])
bw = cv2.inRange(img, 0, 12)
contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
aaa = cv2.drawContours(out, contours, -1, (0, 255, 0), 5, cv2.LINE_AA, hierarchy, 1)
print()
print(pagenames[i])
print('Address exists :', addressexists[i])
print('To CB :', toCB[i])
# if addressflags[i] :
# if toCB[i] :
# print('text :', texts[i])
plt.imshow(Image.fromarray(aaa))
plt.show()
# print recognized text with marks: file - > doc # and doc type -> page number and text
docs_info = []
for i in range(len(docindices)) :
docs = []
if verbose :
print('File =', docfilenames[i])
for j in range(len(docindices[i])) :
doc = {}
doctype = 'Сопроводительное письмо'
if doctypes[i][j] :
doctype = 'Обращение'
doc['Тип документа'] = doctype
text = ''
if verbose :
print('Doc =', j, 'Type =', doctype)
for k in range(len(docindices[i][j])) :
index = docindices[i][j][k]
text += fulltexts[index]
if verbose :
print('Page =', pagenames[index])
print(fulltexts[index])
print('--- end of page ---')
print()
text = re.sub(r'\n +', r'\n', text)
text = re.sub(r'\n+', r'\n', text)
doc['Текст документа'] = text
docs.append(doc)
docs_info.append(docs)
for i in range(len(docindices)) :
for j in range(len(docindices[i])) :
for k in range(len(docindices[i][j])) :
index = docindices[i][j][k]
if toCB[index] :
if verbose :
print('Page =', pagenames[index])
print(texts[index].strip())
print('------------------------')
print()
return docs_info
def processSingleFile(file) :
return processFiles([file])
# docs_info =
# [
# {
# 'Имя поля' : 'Текст поля',
# ...
# },
# ...
# ]
# то есть это массив документов, содержащихся в файле, для каждого документа задан словарь 'Имя поля' : 'Текст поля' (сейчас там 2 поля для каждого документа)