Spaces:
Sleeping
Sleeping
File size: 34,147 Bytes
e7712ed 14e8154 8c17ac0 e7712ed c43ca93 e7712ed 16726e7 14e8154 e7712ed 14e8154 e7712ed 14e8154 e7712ed 2d5215c e7712ed 14e8154 e7712ed 14e8154 e7712ed 5514ed7 e7712ed 14e8154 e7712ed 51eed27 e7712ed 2d5215c e7712ed 51eed27 e7712ed 51eed27 e7712ed 51eed27 e7712ed 14e8154 e7712ed 8c17ac0 e7712ed 14e8154 e7712ed d49c095 e7712ed 14e8154 e7712ed 8c17ac0 e7712ed 14e8154 e7712ed 14e8154 e7712ed d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 0bbcf51 14e8154 0bbcf51 14e8154 0bbcf51 14e8154 0bbcf51 d49c095 14e8154 d49c095 14e8154 e7712ed 2d5215c e7712ed 14e8154 e7712ed 14e8154 e7712ed 14e8154 e7712ed 2d5215c e7712ed d49c095 e7712ed 8c17ac0 e7712ed 8c17ac0 e7712ed 8c17ac0 e7712ed 8c17ac0 e7712ed 14e8154 d49c095 e7712ed 14e8154 d49c095 1d88abf e7712ed d49c095 e7712ed d49c095 e7712ed 14e8154 e7712ed 8c17ac0 14e8154 d49c095 14e8154 e7712ed 8c17ac0 e7712ed 8c17ac0 e7712ed d49c095 e7712ed 14e8154 d49c095 8c17ac0 14e8154 8c17ac0 14e8154 e7712ed 14e8154 e7712ed 14e8154 8c17ac0 e7712ed 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 e7712ed d49c095 8c17ac0 e7712ed 8c17ac0 e7712ed 14e8154 e7712ed 14e8154 e7712ed 14e8154 d49c095 14e8154 d49c095 14e8154 e7712ed 14e8154 e7712ed 14e8154 e7712ed 8c17ac0 e7712ed 14e8154 2d5215c 8c17ac0 2d5215c 64407ac 14e8154 64407ac 2d5215c 64407ac 14e8154 64407ac 14e8154 64407ac 14e8154 64407ac 14e8154 64407ac 14e8154 64407ac 14e8154 64407ac d49c095 14e8154 d49c095 14e8154 dc99cf1 14e8154 d49c095 14e8154 d49c095 14e8154 8c17ac0 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 e7712ed 14e8154 9fe78ad 14e8154 8c17ac0 14e8154 d49c095 14e8154 9fe78ad 8c17ac0 9fe78ad 8c17ac0 9fe78ad 8c17ac0 b43ed9e 14e8154 e7712ed 9fe78ad 14e8154 8c17ac0 14e8154 d49c095 9fe78ad e7712ed 14e8154 9fe78ad e7712ed 14e8154 9fe78ad dc99cf1 e7712ed 14e8154 8c17ac0 14e8154 8c17ac0 d49c095 14e8154 8c17ac0 14e8154 8c17ac0 14e8154 8c17ac0 14e8154 8c17ac0 14e8154 8c17ac0 d49c095 8c17ac0 d49c095 14e8154 d49c095 8c17ac0 dc99cf1 8c17ac0 e7712ed 14e8154 9fe78ad d49c095 9fe78ad 14e8154 d49c095 14e8154 e7712ed 14e8154 8c17ac0 14e8154 8c17ac0 14e8154 9fe78ad 8c17ac0 9fe78ad 14e8154 d49c095 14e8154 d49c095 14e8154 d49c095 e7712ed 14e8154 9fe78ad 14e8154 8c17ac0 9fe78ad 14e8154 d49c095 9fe78ad d49c095 14e8154 d49c095 8c17ac0 d49c095 9fe78ad 2d5215c c43ca93 e7712ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
"""
resnet_dataset_creator.py - Fixed Dataset Creation Tool for ResNet Fine-tuning
Changes: Removed head extraction, fixed image gallery display
"""
import gradio as gr
import cv2
import numpy as np
import pandas as pd
import json
import shutil
import torch
from pathlib import Path
from typing import List, Dict, Optional, Tuple
from datetime import datetime
from PIL import Image
import zipfile
import gc
# Import required modules
from detection import DogDetector
from tracking import SimpleTracker
from reid import SingleModelReID # Using simplified version
from ultralytics import YOLO
# ========== IMAGE QUALITY ANALYZER (unchanged) ==========
class ImageQualityAnalyzer:
"""Analyze and score image quality for dataset selection"""
def __init__(self):
self.quality_weights = {
'sharpness': 0.3,
'resolution': 0.2,
'brightness': 0.15,
'contrast': 0.15,
'occlusion': 0.2
}
def calculate_sharpness(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
return min(100, laplacian.var())
def calculate_resolution_score(self, image: np.ndarray) -> float:
h, w = image.shape[:2]
pixels = h * w
ideal_pixels = 224 * 224
return min(100, (pixels / ideal_pixels) * 100)
def calculate_brightness_score(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mean_brightness = np.mean(gray)
return 100 - abs(mean_brightness - 127) * 0.78
def calculate_contrast_score(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
contrast = gray.std()
return min(100, contrast * 2)
def detect_occlusion(self, bbox: List[float], frame_shape: Tuple) -> float:
x1, y1, x2, y2 = bbox
h, w = frame_shape[:2]
edge_penalty = 0
if x1 <= 5 or y1 <= 5 or x2 >= w-5 or y2 >= h-5:
edge_penalty = 30
aspect = (x2 - x1) / (y2 - y1)
if aspect < 0.3 or aspect > 3:
edge_penalty += 20
return 100 - edge_penalty
def calculate_overall_quality(self, image: np.ndarray, bbox: List[float],
frame_shape: Tuple) -> float:
scores = {
'sharpness': self.calculate_sharpness(image),
'resolution': self.calculate_resolution_score(image),
'brightness': self.calculate_brightness_score(image),
'contrast': self.calculate_contrast_score(image),
'occlusion': self.detect_occlusion(bbox, frame_shape)
}
total = sum(scores[k] * self.quality_weights[k] for k in scores)
return total
# ========== SMART IMAGE SELECTOR (unchanged) ==========
class SmartImageSelector:
"""Intelligently select best images based on quality and diversity"""
def __init__(self):
self.quality_analyzer = ImageQualityAnalyzer()
self.min_temporal_distance = 10
def select_best_images(self, dog_data: List[Dict], max_images: int = 30,
video_fps: float = 30) -> List[Dict]:
for item in dog_data:
item['quality_score'] = self.quality_analyzer.calculate_overall_quality(
item['crop'], item['bbox'], item['frame'].shape
)
if len(dog_data) <= max_images:
return dog_data
dog_data.sort(key=lambda x: x['quality_score'], reverse=True)
selected = []
selected_frames = set()
selected_indices = set()
for idx, item in enumerate(dog_data):
frame_num = item['frame_num']
too_close = any(
abs(frame_num - f) < self.min_temporal_distance
for f in selected_frames
)
if not too_close and len(selected) < max_images:
selected.append(item)
selected_frames.add(frame_num)
selected_indices.add(idx)
if len(selected) < max_images:
for idx, item in enumerate(dog_data):
if idx not in selected_indices and len(selected) < max_images:
selected.append(item)
selected_indices.add(idx)
return selected[:max_images]
# ========== MAIN DATASET CREATOR - FIXED ==========
class ResNetDatasetCreator:
"""Main application with head extraction removed and gallery display fixed"""
def __init__(self):
# Directories
self.temp_dir = Path("temp_dataset")
self.final_dir = Path("resnet_finetune_dataset")
self.database_dir = Path("permanent_database")
# Components - initialize once
self.detector = DogDetector(device='cuda' if torch.cuda.is_available() else 'cpu')
self.tracker = SimpleTracker()
self.reid = SingleModelReID(device='cuda' if torch.cuda.is_available() else 'cpu')
# REMOVED: self.head_extractor = SimpleHeadExtractor()
self.image_selector = SmartImageSelector()
# Session data - temporary only
self.current_video_path = None
self.current_session = None
self.temp_processed_dogs = {} # Temporary dogs from current video
self.permanent_dogs = {} # Permanently saved dogs
# Create directories
self.temp_dir.mkdir(exist_ok=True)
self.final_dir.mkdir(exist_ok=True)
self.database_dir.mkdir(exist_ok=True)
# Load permanent database
self.load_permanent_database()
def load_permanent_database(self):
"""Load only permanently saved dogs"""
db_file = self.database_dir / "database.json"
if db_file.exists():
with open(db_file, 'r') as f:
data = json.load(f)
self.permanent_dogs = {int(k): v for k, v in data.get('dogs', {}).items()}
print(f"Loaded {len(self.permanent_dogs)} permanently saved dogs")
def save_to_permanent_database(self):
"""Save selected dogs to permanent database"""
# Merge temp dogs into permanent
self.permanent_dogs.update(self.temp_processed_dogs)
# Save metadata
db_file = self.database_dir / "database.json"
data = {
'dogs': {str(k): v for k, v in self.permanent_dogs.items()},
'last_updated': datetime.now().isoformat()
}
with open(db_file, 'w') as f:
json.dump(data, f, indent=2)
# Copy images from temp to permanent
for dog_id in self.temp_processed_dogs:
src_dir = self.temp_dir / f"dog_{dog_id:03d}"
dst_dir = self.database_dir / f"dog_{dog_id:03d}"
if src_dir.exists():
if dst_dir.exists():
shutil.rmtree(dst_dir)
shutil.copytree(src_dir, dst_dir)
print(f"Saved {len(self.temp_processed_dogs)} dogs to permanent database")
def clear_temp_data(self):
"""Clear all temporary data for new video and free memory."""
# Clear temp directory
if self.temp_dir.exists():
shutil.rmtree(self.temp_dir)
self.temp_dir.mkdir()
# Clear temp session data
self.current_video_path = None
self.current_session = None
self.temp_processed_dogs = {}
# Reset ReID (clears in-memory dogs)
self.reid.reset_all()
# π ADD THESE TWO LINES FOR MEMORY CLEANUP
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Temporary data cleared and memory released.")
def clear_all_permanent_data(self):
"""Clear entire permanent database"""
if self.database_dir.exists():
shutil.rmtree(self.database_dir)
self.database_dir.mkdir()
self.permanent_dogs = {}
print("All permanent data cleared")
def process_video(self, video_path: str, reid_threshold: float,
max_images_per_dog: int, sample_rate: int) -> Dict:
"""Process video with current settings"""
# Clear previous temp data if new video
if video_path != self.current_video_path:
self.clear_temp_data()
self.current_video_path = video_path
else:
# Re-processing same video - clear and start fresh
self.clear_temp_data()
self.current_video_path = video_path
# Set ReID threshold
self.reid.set_all_thresholds(reid_threshold)
# Storage for dog data
dog_data = {}
# Open video
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_num = 0
processed_frames = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Sample frames
if frame_num % sample_rate == 0:
# Detect dogs
detections = self.detector.detect(frame)
# Update tracking
tracks = self.tracker.update(detections)
# Process each track
for track in tracks:
# Get ReID result
results = self.reid.match_or_register_all(track)
dog_id = results['ResNet50']['dog_id']
confidence = results['ResNet50']['confidence']
if dog_id > 0 and confidence > 0.3:
# Get best detection
detection = None
for det in reversed(track.detections):
if det.image_crop is not None:
detection = det
break
if detection:
if dog_id not in dog_data:
dog_data[dog_id] = []
dog_data[dog_id].append({
'frame': frame.copy(),
'crop': detection.image_crop,
'bbox': detection.bbox,
'frame_num': frame_num,
'reid_confidence': confidence,
'detection_confidence': detection.confidence,
'timestamp': frame_num / fps
})
processed_frames += 1
frame_num += 1
# Yield progress
if frame_num % 30 == 0:
progress = int((frame_num / total_frames) * 100)
yield {'progress': progress, 'status': f"Processing: {progress}%"}
cap.release()
# Select best images for each dog
total_images = 0
new_dogs = {}
for dog_id, images in dog_data.items():
selected = self.image_selector.select_best_images(
images, max_images_per_dog, fps
)
# Save to temp directory only - ONLY FULL BODY IMAGES
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
dog_dir.mkdir(exist_ok=True)
# REMOVED: (dog_dir / 'head').mkdir(exist_ok=True)
saved_count = 0
for idx, img_data in enumerate(selected):
# Save full crop only
full_path = dog_dir / f"frame_{img_data['frame_num']:06d}.jpg"
cv2.imwrite(str(full_path), img_data['crop'])
# REMOVED: Head extraction and saving
saved_count += 1
total_images += saved_count
# Store in temp dogs only
new_dogs[dog_id] = {
'num_images': saved_count,
'avg_confidence': np.mean([d['reid_confidence'] for d in selected]),
'quality_scores': [d['quality_score'] for d in selected]
}
# Update temp dogs (not permanent)
self.temp_processed_dogs = new_dogs
# Save session info
self.current_session = {
'video': video_path,
'timestamp': datetime.now().isoformat(),
'num_dogs': len(new_dogs),
'total_images': total_images,
'reid_threshold': reid_threshold,
'dogs': {str(k): v for k, v in new_dogs.items()}
}
# Save metadata to temp
with open(self.temp_dir / 'session.json', 'w') as f:
json.dump(self.current_session, f, indent=2)
yield {'status': 'complete', 'session': self.current_session}
def get_dog_images(self, dog_id: int, from_permanent: bool = False, max_display: int = None) -> List:
"""Get images for verification - FIXED to show all or specified number of images"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
# Check directly in dog directory (no 'full' subdirectory anymore)
if not dog_dir.exists():
return []
images = []
image_files = sorted(dog_dir.glob("*.jpg"))
# If max_display is specified, limit to that number, otherwise show all
if max_display:
image_files = image_files[:max_display]
for img_path in image_files:
img = cv2.imread(str(img_path))
if img is not None:
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(img_rgb)
return images
def remove_images_by_selection(self, dog_id: int, selected_indices: List, from_permanent: bool = False):
"""Remove images based on gallery selection"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
if not dog_dir.exists():
return
image_files = sorted(list(dog_dir.glob("*.jpg")))
# Remove selected images
for idx in selected_indices:
if 0 <= idx < len(image_files):
# Remove image
image_files[idx].unlink(missing_ok=True)
def delete_dog(self, dog_id: int, from_permanent: bool = False):
"""Delete entire dog folder"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
if dog_id in self.permanent_dogs:
del self.permanent_dogs[dog_id]
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
if dog_id in self.temp_processed_dogs:
del self.temp_processed_dogs[dog_id]
if dog_dir.exists():
shutil.rmtree(dog_dir)
def save_final_dataset(self, format_type: str = 'both') -> str:
"""Export both temp and permanent dogs - UPDATED for full body only"""
if self.final_dir.exists():
shutil.rmtree(self.final_dir)
self.final_dir.mkdir()
# Combine temp and permanent dogs
all_dog_dirs = []
# Add temp dogs
for d in self.temp_dir.iterdir():
if d.is_dir() and d.name.startswith('dog_'):
all_dog_dirs.append(d)
# Add permanent dogs
temp_dogs = {d.name for d in all_dog_dirs}
for d in self.database_dir.iterdir():
if d.is_dir() and d.name.startswith('dog_') and d.name not in temp_dogs:
all_dog_dirs.append(d)
data_entries = []
final_id = 1
for dog_dir in sorted(all_dog_dirs):
if not dog_dir.exists():
continue
final_dog_dir = self.final_dir / f"dog_{final_id:03d}"
shutil.copytree(dog_dir, final_dog_dir)
for img_path in final_dog_dir.glob("*.jpg"):
data_entries.append({
'dog_id': final_id,
'image_path': str(img_path.relative_to(self.final_dir)),
'class': final_id
})
final_id += 1
if format_type in ['csv', 'both']:
df = pd.DataFrame(data_entries)
if len(df) > 5:
from sklearn.model_selection import train_test_split
train_df, val_df = train_test_split(
df, test_size=0.2, stratify=df['dog_id'], random_state=42
)
train_df.to_csv(self.final_dir / 'train.csv', index=False)
val_df.to_csv(self.final_dir / 'val.csv', index=False)
else:
df.to_csv(self.final_dir / 'train.csv', index=False)
metadata = {
'total_dogs': final_id - 1,
'total_images': len(data_entries),
'format': format_type,
'created': datetime.now().isoformat()
}
with open(self.final_dir / 'metadata.json', 'w') as f:
json.dump(metadata, f, indent=2)
# Create zip
zip_path = self.final_dir.parent / f"resnet_dataset_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in self.final_dir.rglob('*'):
zipf.write(file_path, file_path.relative_to(self.final_dir))
return str(zip_path)
def create_interface(self):
"""Create Gradio interface with fixes"""
with gr.Blocks(
title="ResNet Fine-tuning Dataset Creator",
theme=gr.themes.Soft()
) as app:
gr.Markdown("""
# π― ResNet Fine-tuning Dataset Creator - Full Body Only
### Creates dataset with full body dog images only (no head extraction)
""")
# States
processing_state = gr.State(None)
selected_indices_state = gr.State([])
with gr.Tabs() as tabs:
# ========== STEP 1: PROCESS VIDEO ==========
with gr.Tab("πΉ Step 1: Process Video", id=0):
with gr.Row():
video_input = gr.Video(label="Upload Video")
with gr.Column():
reid_threshold = gr.Slider(
0.30, 0.85, 0.40, step=0.05,
label="ReID Threshold",
info="Lower = More lenient (combine similar dogs)"
)
max_images = gr.Slider(
10, 50, 30, step=5,
label="Max Images per Dog"
)
sample_rate = gr.Slider(
1, 5, 2, step=1,
label="Sample Rate",
info="Process every Nth frame"
)
process_btn = gr.Button("π Process Video", variant="primary", size="lg")
with gr.Column():
progress_bar = gr.Textbox(label="Progress", interactive=False)
results_display = gr.HTML(label="Processing Results")
with gr.Row():
clear_btn = gr.Button(
"π Clear & Reset (Process Again)",
variant="secondary",
size="lg",
visible=False
)
def process_wrapper(video, threshold, max_img, sample):
"""Process with current settings"""
if not video:
return None, "", "Please upload a video", gr.update(visible=False)
# Process video (will auto-clear if needed)
for update in self.process_video(video, threshold, int(max_img), int(sample)):
if 'progress' in update:
yield None, "", update['status'], gr.update(visible=False)
else:
# Format results
session = update['session']
html = f"""
<div style="padding: 20px; background: #f8f9fa; border-radius: 10px;">
<h3>π Processing Complete!</h3>
<p><b>Dogs detected:</b> {session['num_dogs']}</p>
<p><b>Total full body images:</b> {session['total_images']}</p>
<p><b>ReID threshold used:</b> {session['reid_threshold']:.2f}</p>
<hr>
<p>β
Data is in <b>temporary storage</b>. Review in Step 2 before saving permanently.</p>
</div>
"""
yield session, html, "Complete! β
", gr.update(visible=True)
def clear_and_reset():
"""Clear all temp data for reprocessing"""
self.clear_temp_data()
return None, "", "", gr.update(visible=False)
process_btn.click(
process_wrapper,
inputs=[video_input, reid_threshold, max_images, sample_rate],
outputs=[processing_state, results_display, progress_bar, clear_btn]
)
clear_btn.click(
clear_and_reset,
outputs=[processing_state, results_display, progress_bar, clear_btn]
)
# ========== STEP 2: VERIFY & CLEAN ==========
with gr.Tab("β
Step 2: Verify & Clean", id=1):
gr.Markdown("""
Review temporary results. **Nothing is permanently saved until you click Save.**
Click images in the gallery to select them, then use Remove Selected.
""")
with gr.Row():
with gr.Column():
source_selector = gr.Radio(
choices=["Temporary (Current Video)", "Permanent (Saved)"],
value="Temporary (Current Video)",
label="Data Source"
)
dog_selector = gr.Dropdown(
label="Select Dog",
choices=[],
interactive=True
)
refresh_btn = gr.Button("π Refresh List")
image_gallery = gr.Gallery(
label="Full Body Images - Click to select for removal",
show_label=True,
columns=6,
rows=8, # Increased rows for more visibility
object_fit="contain",
height=600, # Fixed height for scrolling
interactive=True,
type="numpy"
)
with gr.Row():
selected_info = gr.Textbox(
label="Selected Images",
value="No images selected",
interactive=False
)
remove_selected_btn = gr.Button("π Remove Selected Images", variant="secondary")
delete_dog_btn = gr.Button("β Delete Entire Dog", variant="stop")
with gr.Row():
save_to_permanent_btn = gr.Button(
"πΎ Save Current Video Results to Permanent Database",
variant="primary",
size="lg"
)
clear_permanent_btn = gr.Button(
"β οΈ Clear All Permanent Data",
variant="stop"
)
status_text = gr.Textbox(label="Status", interactive=False)
def refresh_dogs(source):
"""Refresh dog list based on source"""
if source == "Temporary (Current Video)":
if not self.temp_processed_dogs:
return gr.update(choices=[], value=None)
choices = [f"Dog {dog_id}" for dog_id in sorted(self.temp_processed_dogs.keys())]
else:
if not self.permanent_dogs:
return gr.update(choices=[], value=None)
choices = [f"Dog {dog_id}" for dog_id in sorted(self.permanent_dogs.keys())]
if choices:
return gr.update(choices=choices, value=choices[0])
return gr.update(choices=[], value=None)
def show_dog_images(dog_selection, source):
"""Display ALL images for selected dog"""
if not dog_selection:
return [], [], "No dog selected"
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
# Don't limit number of images - show all
images = self.get_dog_images(dog_id, from_permanent)
return images, [], f"Showing {len(images)} images for Dog {dog_id}"
def handle_gallery_select(evt: gr.SelectData, selected_indices):
"""Handle gallery selection"""
if evt.index in selected_indices:
selected_indices.remove(evt.index)
else:
selected_indices.append(evt.index)
if selected_indices:
return selected_indices, f"Selected images: {sorted(selected_indices)}"
return [], "No images selected"
def remove_selected_images(dog_selection, source, selected_indices):
"""Remove selected images"""
if not dog_selection:
return "No dog selected", [], []
if not selected_indices:
return "No images selected", gr.update(), selected_indices
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
self.remove_images_by_selection(dog_id, selected_indices, from_permanent)
# Refresh gallery
images = self.get_dog_images(dog_id, from_permanent)
return f"Removed {len(selected_indices)} images", images, []
def delete_dog(dog_selection, source):
"""Delete entire dog"""
if not dog_selection:
return "No dog selected", []
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
self.delete_dog(dog_id, from_permanent)
return f"Deleted Dog {dog_id}", []
def save_to_permanent():
"""Save current temp results to permanent database"""
if not self.temp_processed_dogs:
return "No temporary data to save"
self.save_to_permanent_database()
count = len(self.temp_processed_dogs)
self.clear_temp_data() # Clear temp after saving
return f"β
Saved {count} dogs to permanent database. Temp data cleared."
def clear_all_permanent():
"""Clear all permanent data"""
self.clear_all_permanent_data()
return "β οΈ All permanent data cleared"
# Event handlers
refresh_btn.click(
refresh_dogs,
inputs=source_selector,
outputs=dog_selector
)
dog_selector.change(
show_dog_images,
inputs=[dog_selector, source_selector],
outputs=[image_gallery, selected_indices_state, selected_info]
)
image_gallery.select(
handle_gallery_select,
inputs=selected_indices_state,
outputs=[selected_indices_state, selected_info]
)
remove_selected_btn.click(
remove_selected_images,
inputs=[dog_selector, source_selector, selected_indices_state],
outputs=[status_text, image_gallery, selected_indices_state]
)
delete_dog_btn.click(
delete_dog,
inputs=[dog_selector, source_selector],
outputs=[status_text, image_gallery]
)
save_to_permanent_btn.click(
save_to_permanent,
outputs=status_text
)
clear_permanent_btn.click(
clear_all_permanent,
outputs=status_text
)
# ========== STEP 3: EXPORT DATASET ==========
with gr.Tab("πΎ Step 3: Export Dataset", id=2):
gr.Markdown("""
Export combined dataset (temporary + permanent dogs) for training.
**Dataset contains full body images only.**
""")
format_selector = gr.Radio(
choices=["folder", "csv", "both"],
value="both",
label="Export Format"
)
export_btn = gr.Button("π¦ Export Final Dataset", variant="primary", size="lg")
export_output = gr.Textbox(label="Export Path", interactive=False)
download_file = gr.File(label="Download Dataset", interactive=False)
stats_display = gr.Markdown()
def export_dataset(format_type):
try:
zip_path = self.save_final_dataset(format_type)
with open(self.final_dir / 'metadata.json', 'r') as f:
metadata = json.load(f)
stats = f"""
### β
Dataset Exported!
- **Total Dogs**: {metadata['total_dogs']}
- **Total Full Body Images**: {metadata['total_images']}
- **Format**: {format_type}
Download the ZIP file below.
"""
return zip_path, zip_path, stats
except Exception as e:
return "", None, f"### β Export Error\n{str(e)}"
export_btn.click(
export_dataset,
inputs=format_selector,
outputs=[export_output, download_file, stats_display]
)
return app
# Main entry point
if __name__ == "__main__":
creator = ResNetDatasetCreator()
app = creator.create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |