nguyentantoan's picture
Update app.py
8afdc67 verified
# app_fast.py - Vintern-1B Fast Version
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
import time
import json
import traceback
# Setup
device = "cpu"
model = None
tokenizer = None
transform = None
def build_transform(input_size=448):
"""Optimized transform"""
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
return T.Compose([
T.Lambda(lambda img: img.convert('RGB') if hasattr(img, 'mode') and img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
def load_model():
"""Load Vintern-1B (faster version)"""
global model, tokenizer, transform
try:
print("🚀 Loading Vintern-1B (Fast Version)...")
# Sử dụng model nhẹ hơn
model_name = "5CD-AI/Vintern-1B-v2" # Thay vì v3.5
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Optimize model for inference
model.eval()
model = torch.jit.optimize_for_inference(model)
transform = build_transform()
print("✅ Fast model loaded!")
return True
except Exception as e:
print(f"❌ Error: {e}")
traceback.print_exc()
return False
def fast_analyze(image):
"""Optimized analysis function"""
if model is None:
return "❌ Model chưa sẵn sàng"
try:
start_time = time.time()
# Quick image processing
if image is None:
return "❌ Không có ảnh"
if hasattr(image, 'mode') and image.mode != 'RGB':
image = image.convert('RGB')
# Fast transform
image_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
# Shorter, faster generation
query = "Mô tả ngắn gọn:"
try:
result = model.chat(
tokenizer,
image_tensor,
query,
generation_config=dict(
max_new_tokens=100, # Ngắn hơn → nhanh hơn
do_sample=False, # Greedy → nhanh hơn
temperature=0.7,
num_beams=1 # No beam search → nhanh hơn
)
)
except:
# Fallback nhanh
inputs = tokenizer(query, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_new_tokens=80,
do_sample=False,
num_beams=1
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = result.replace(query, "").strip()
processing_time = time.time() - start_time
return f"""**📝 Mô tả nhanh:**
{result}
**⚡ Thời gian:** {processing_time:.1f}s
**🤖 Model:** Vintern-1B-v2 (Optimized)
**💨 Tốc độ:** {1/processing_time:.1f} FPS
---
*Model được tối ưu cho tốc độ - phù hợp real-time*
"""
except Exception as e:
return f"❌ Lỗi: {str(e)}"
# Load model
print("🚀 Starting Fast Vintern Server...")
model_loaded = load_model()
# Lightweight Gradio interface
with gr.Blocks(
title="Vintern-1B Fast",
theme=gr.themes.Base(),
) as demo:
gr.Markdown("# ⚡ Vintern-1B Fast - Tốc Độ Cao")
if model_loaded:
gr.Markdown("✅ **Model sẵn sàng!** Tối ưu cho tốc độ và real-time.")
with gr.Row():
image_input = gr.Image(type="pil", label="📤 Upload Ảnh")
result_output = gr.Textbox(
label="📋 Kết Quả",
lines=8,
show_copy_button=True
)
# Auto-analyze on upload
image_input.change(
fn=fast_analyze,
inputs=image_input,
outputs=result_output
)
gr.Markdown("""
### ⚡ Tối ưu cho tốc độ:
- **Model nhẹ**: Vintern-1B-v2 (~1.5GB)
- **Fast generation**: Greedy decode, short output
- **Optimized**: JIT compilation, no beam search
- **Real-time ready**: ~2-5 giây/ảnh
""")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)