G.E.N.I.E / gradio_repo_analysis.py
nihalaninihal's picture
Upload 11 files
f6f98ea verified
import gradio as gr
import os
import json
import asyncio
import base64
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from handler import AudioLoop
import plotly.express as px
import plotly.graph_objects as go
from typing import Dict, List, Any, Optional, Tuple
# Utility functions for repository analysis and visualization
def analyze_repository_data(repo_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze repository data and prepare metrics for visualization
"""
results = {
"language_stats": {},
"commit_history": [],
"contributor_stats": [],
"code_quality": {},
"issue_stats": {}
}
# This would normally process real data from the Gemini response
# Placeholder data for demonstration
results["language_stats"] = {
"JavaScript": 45,
"Python": 30,
"HTML": 15,
"CSS": 10
}
results["commit_history"] = [
{"date": "2023-01", "commits": 12},
{"date": "2023-02", "commits": 18},
{"date": "2023-03", "commits": 7},
{"date": "2023-04", "commits": 15},
{"date": "2023-05", "commits": 22}
]
results["contributor_stats"] = [
{"name": "User1", "commits": 45, "additions": 2300, "deletions": 1200},
{"name": "User2", "commits": 32, "additions": 1800, "deletions": 900},
{"name": "User3", "commits": 27, "additions": 1500, "deletions": 700}
]
return results
def create_language_pie_chart(language_stats: Dict[str, float]) -> go.Figure:
"""
Create a pie chart for language distribution
"""
labels = list(language_stats.keys())
values = list(language_stats.values())
fig = go.Figure(data=[go.Pie(
labels=labels,
values=values,
hole=.3,
marker_colors=px.colors.sequential.Plasma
)])
fig.update_layout(
title_text="Repository Language Distribution",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
return fig
def create_commit_history_chart(commit_history: List[Dict[str, Any]]) -> go.Figure:
"""
Create a line chart for commit history
"""
dates = [item["date"] for item in commit_history]
commits = [item["commits"] for item in commit_history]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dates,
y=commits,
mode='lines+markers',
name='Commits',
line=dict(color='rgba(75, 0, 130, 0.8)', width=3),
marker=dict(size=8, color='rgba(138, 43, 226, 1)')
))
fig.update_layout(
title="Commit Activity Over Time",
xaxis_title="Month",
yaxis_title="Number of Commits",
template="plotly_dark",
plot_bgcolor='rgba(26, 32, 58, 0.3)',
paper_bgcolor='rgba(26, 32, 58, 0.3)',
font=dict(color='#e0e0e0')
)
return fig
def create_contributors_chart(contributor_stats: List[Dict[str, Any]]) -> go.Figure:
"""
Create a bar chart for contributor statistics
"""
names = [item["name"] for item in contributor_stats]
commits = [item["commits"] for item in contributor_stats]
fig = go.Figure()
fig.add_trace(go.Bar(
x=names,
y=commits,
marker_color='rgba(138, 43, 226, 0.7)',
marker_line_color='rgba(138, 43, 226, 1.0)',
marker_line_width=1.5,
opacity=0.8
))
fig.update_layout(
title="Top Contributors",
xaxis_title="Contributor",
yaxis_title="Number of Commits",
template="plotly_dark",
plot_bgcolor='rgba(26, 32, 58, 0.3)',
paper_bgcolor='rgba(26, 32, 58, 0.3)',
font=dict(color='#e0e0e0')
)
return fig
# Main Gradio application
class GradioRepoAnalysis:
def __init__(self):
self.audio_loop = None
self.current_repo = None
self.analysis_results = None
def init_audio_loop(self):
"""Initialize the AudioLoop from your handler module"""
if self.audio_loop is None:
self.audio_loop = AudioLoop()
# This would normally connect to Gemini API
# For demo purposes, we'll simulate this
async def process_query(self, repo_url: str, query: str) -> Tuple[str, go.Figure, go.Figure, go.Figure]:
"""
Process a user query about a repository and return analysis results
"""
# In a real implementation, this would send the query to Gemini
# and process the response
# For demo purposes, we'll simulate a response
if not repo_url.startswith("https://github.com/"):
return "Please enter a valid GitHub repository URL", None, None, None
if not query:
return "Please enter a query about the repository", None, None, None
# Simulate a delay for processing
await asyncio.sleep(2)
# For demo, we'll generate simulated repository data
repo_name = repo_url.split("/")[-1]
repo_owner = repo_url.split("/")[-2]
repo_data = {
"name": repo_name,
"owner": repo_owner,
"url": repo_url,
# Other simulated data would go here
}
# Analyze the repository data
self.analysis_results = analyze_repository_data(repo_data)
# Create the visualization charts
language_chart = create_language_pie_chart(self.analysis_results["language_stats"])
commit_chart = create_commit_history_chart(self.analysis_results["commit_history"])
contributor_chart = create_contributors_chart(self.analysis_results["contributor_stats"])
# Generate a text response
response = f"Analysis of {repo_owner}/{repo_name}:\n\n"
response += f"This repository is primarily written in {max(self.analysis_results['language_stats'], key=self.analysis_results['language_stats'].get)}, "
response += f"with {sum(item['commits'] for item in self.analysis_results['commit_history'])} commits in the last 5 months. "
response += f"The most active contributor is {self.analysis_results['contributor_stats'][0]['name']} with {self.analysis_results['contributor_stats'][0]['commits']} commits."
return response, language_chart, commit_chart, contributor_chart
def build_interface(self):
"""
Build and launch the Gradio interface
"""
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
gr.Markdown("# GitHub Repository Analysis with G.E.N.I.E.")
gr.Markdown("Analyze GitHub repositories using natural language queries")
with gr.Row():
with gr.Column(scale=3):
repo_url = gr.Textbox(
label="GitHub Repository URL",
placeholder="https://github.com/owner/repo",
info="Enter the URL of the GitHub repository you want to analyze"
)
query = gr.Textbox(
label="Your Query",
placeholder="What are the main languages used in this repo?",
info="Ask a question about the repository"
)
with gr.Row():
submit_btn = gr.Button("Analyze Repository", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
response = gr.Markdown(label="Analysis Results")
with gr.Column(scale=2):
with gr.Tab("Voice Chat"):
audio_input = gr.Audio(source="microphone", type="numpy", label="Voice Input")
audio_output = gr.Audio(label="G.E.N.I.E. Response")
with gr.Tabs():
with gr.Tab("Language Distribution"):
language_chart = gr.Plot(label="Repository Language Distribution")
with gr.Tab("Commit History"):
commit_chart = gr.Plot(label="Commit Activity Over Time")
with gr.Tab("Contributors"):
contributor_chart = gr.Plot(label="Top Contributors")
# Set up event handlers
submit_btn.click(
fn=lambda repo, q: asyncio.run(self.process_query(repo, q)),
inputs=[repo_url, query],
outputs=[response, language_chart, commit_chart, contributor_chart]
)
clear_btn.click(
fn=lambda: (
"",
"https://github.com/user/repo",
"What are the main languages used in this repo?",
None, None, None
),
inputs=None,
outputs=[response, repo_url, query, language_chart, commit_chart, contributor_chart]
)
return interface
# Initialize and launch the application
def main():
app = GradioRepoAnalysis()
interface = app.build_interface()
interface.launch(share=True)
if __name__ == "__main__":
main()