Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,990 Bytes
8a1b058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
KaniTTS is a Text-to-Speech system that uses causal language models to generate speech via NeMo audio codec tokens. The project is deployed as a HuggingFace Gradio Space.
## Running the Application
```bash
# Run the Gradio app (launches on http://0.0.0.0:7860)
python app.py
```
The app requires a HuggingFace token set as the `HF_TOKEN` environment variable to download models.
## Architecture
### Token Flow Pipeline
The system uses a custom token layout that interleaves text and audio in a single sequence:
1. **Input prompt construction** (`KaniModel.get_input_ids`):
- `START_OF_HUMAN` → text tokens → `END_OF_TEXT` → `END_OF_HUMAN`
- Optionally prefixed with speaker ID (e.g., "andrew: Hello world")
2. **LLM generation** (`KaniModel.model_request`):
- Model generates sequence containing: text section + `START_OF_SPEECH` + audio codec tokens + `END_OF_SPEECH`
3. **Audio decoding** (`NemoAudioPlayer.get_waveform`):
- Extracts audio tokens between `START_OF_SPEECH` and `END_OF_SPEECH`
- Audio tokens are arranged in 4 interleaved codebooks (q=4)
- Tokens are offset by `audio_tokens_start + (codebook_size * codebook_index)`
- NeMo codec reconstructs waveform from the 4 codebooks
### Key Classes
**`NemoAudioPlayer`** (util.py:27-170)
- Loads NeMo AudioCodecModel for waveform reconstruction
- Manages special token IDs (derived from `tokeniser_length` base)
- Validates output has required speech markers
- Extracts and decodes 4-codebook audio tokens from LLM output
- Returns 22050 Hz audio as NumPy array
**`KaniModel`** (util.py:172-303)
- Wraps HuggingFace causal LM (loaded with bfloat16, auto device mapping)
- Prepares prompts with conversation/modality control tokens
- Runs generation with sampling parameters (temp, top_p, repetition_penalty)
- Delegates audio reconstruction to `NemoAudioPlayer`
- Returns tuple: (audio_array, text, timing_report)
**`InitModels`** (util.py:305-343)
- Factory that loads all models from `model_config.yaml` at startup
- Returns dict mapping model names to `KaniModel` instances
- All models share the same `NemoAudioPlayer` instance
**`Examples`** (util.py:345-387)
- Converts `examples.yaml` structure into Gradio Examples format
- Output order: `[text, model, speaker_id, temperature, top_p, repetition_penalty, max_len]`
### Configuration Files
**`model_config.yaml`**
- `nemo_player`: NeMo codec config (model name, token layout constants)
- `models`: Dict of available TTS models with device_map and optional speaker_id mappings
**`examples.yaml`**
- List of example prompts with associated parameters for Gradio UI
### Dependency Setup
`create_env.py` runs before imports in `app.py` to:
- Install transformers from git main branch (required for compatibility)
- Set `OMP_NUM_THREADS=4`
- Uses `/tmp/deps_installed` marker to avoid reinstalling on every run
## Important Token Constants
All special tokens are defined relative to `tokeniser_length` (64400):
- `start_of_speech = tokeniser_length + 1`
- `end_of_speech = tokeniser_length + 2`
- `start_of_human = tokeniser_length + 3`
- `end_of_human = tokeniser_length + 4`
- `start_of_ai = tokeniser_length + 5`
- `end_of_ai = tokeniser_length + 6`
- `pad_token = tokeniser_length + 7`
- `audio_tokens_start = tokeniser_length + 10`
- `codebook_size = 4032`
## Multi-Speaker Support
Models with `speaker_id` mappings in `model_config.yaml` support voice selection:
- Speaker IDs are prefixed to the text prompt (e.g., "andrew: Hello")
- The Gradio UI shows/hides speaker dropdown based on selected model
- Base models (v.0.1, v.0.2) generate random voices without speaker control
## HuggingFace Spaces Deployment
The README.md header contains HF Spaces metadata:
- `sdk: gradio` with version 5.46.0
- `app_file: app.py` as entrypoint
- References 3 model checkpoints and the NeMo codec
|