nitikaborkar's picture
Upload 20 files
a6beb58 verified
import streamlit as st
import cv2
import numpy as np
import json
from PIL import Image
import io
import tempfile
import os
from datetime import datetime
from seat_depth_analysis import process_seat_depth_analysis
st.set_page_config(
page_title="Seat Depth Analyzer",
page_icon="πŸͺ‘",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for background gradient and styling
st.markdown("""
<style>
/* Gradient background for the whole app */
.stApp {
background: linear-gradient(135deg, #e0f7fa, #ffffff, #fce4ec);
background-attachment: fixed;
}
/* Make metric cards look modern */
div[data-testid="metric-container"] {
background-color: rgba(255, 255, 255, 0.7);
padding: 15px;
border-radius: 12px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
/* Beautify sidebar */
section[data-testid="stSidebar"] {
background: linear-gradient(180deg, #f1f8e9, #ffffff);
}
/* Make headers and titles prettier */
h1, h2, h3 {
font-family: 'Segoe UI', sans-serif;
color: #2c3e50;
}
/* Button tweaks */
button[kind="primary"] {
background-color: #00796b;
color: white;
border-radius: 8px;
padding: 8px 16px;
}
button[kind="primary"]:hover {
background-color: #004d40;
color: white;
}
/* Download button */
div.stDownloadButton > button {
background-color: #3949ab;
color: white;
border-radius: 8px;
}
div.stDownloadButton > button:hover {
background-color: #1a237e;
}
</style>
""", unsafe_allow_html=True)
def main():
st.title("πŸͺ‘βœ¨ SitSmart")
st.subheader("Analyze your seat β€” because not all thrones are ergonomic :)")
st.markdown("---")
# Sidebar for configuration
st.sidebar.header("πŸ“ Configuration: Anthropometric Assumption")
st.sidebar.markdown(
"We assume a default **ear-to-eye distance of 7 cm**, based on average adult anatomy. "
"You may change this value if the subject in the image deviates significantly."
)
st.sidebar.caption("Don’t worry, no need to measure your face with a ruler. πŸ“πŸ‘‚")
# Eye-to-ear distance setting
eye_to_ear_cm = st.sidebar.slider(
"Eye-to-Ear Distance (cm)",
min_value=5.0,
max_value=10.0,
value=7.0,
step=0.1,
help="Average distance from eye to ear for scaling reference (default: 7.0 cm)"
)
sam_checkpoint = "sam_vit_b_01ec64.pth"
# Information section
st.sidebar.markdown("---")
st.sidebar.header("πŸ“‹ Classification Guide")
st.sidebar.markdown("""
**Optimal**: 2-6 cm clearance from seat front to back of knee
**Too Deep**: Less than 2 cm clearance (circulation risk)
**Too Short**: More than 6 cm clearance (poor thigh support)
""")
st.header("πŸ“€ Choose Image")
# Image source selection
image_source = st.radio(
"Select image source:",
options=["Upload your own", "Choose from samples"],
horizontal=True
)
selected_image_path = None
uploaded_file = None
if image_source == "Upload your own":
# File uploader
uploaded_file = st.file_uploader(
"Choose a side-profile image of person seated on chair",
type=['png', 'jpg', 'jpeg', 'webp'],
help="Upload a clear side-profile image showing the person seated with their back against the chair"
)
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", width=500)
else: # Choose from samples
sample_category = st.selectbox(
"Select sample category:",
options=["optimal", "too_deep", "too_short"],
format_func=lambda x: x.replace("_", " ").title()
)
# Get available sample images
sample_images = get_sample_images(sample_category)
if sample_images:
selected_image = st.selectbox(
"Select sample image:",
options=sample_images,
format_func=lambda x: x.replace("_", " ").replace(".png", "").replace(".jpg", "").replace(".jpeg", "").title()
)
selected_image_path = os.path.join("sample_images", sample_category, selected_image)
if os.path.exists(selected_image_path):
# Display selected sample image
image = Image.open(selected_image_path)
st.image(image, caption=f"Sample: {selected_image}", width=500)
else:
st.error(f"Sample image not found: {selected_image_path}")
selected_image_path = None
else:
st.warning(f"No sample images found in sample_images/{sample_category}/")
# Process button
if (uploaded_file is not None or selected_image_path is not None):
if st.button("πŸ” Analyze Seat Depth", type="primary"):
if image_source == "Upload your own":
process_uploaded_image(uploaded_file, eye_to_ear_cm, sam_checkpoint)
else:
process_sample_image(selected_image_path, eye_to_ear_cm, sam_checkpoint)
st.info("Upload an image and click 'Analyze Seat Depth' to see results here.")
def get_sample_images(category):
"""Get list of sample images for a given category"""
sample_dir = os.path.join("sample_images", category)
if not os.path.exists(sample_dir):
return []
# Get all image files
valid_extensions = ['.png', '.jpg', '.jpeg', '.webp']
sample_images = []
try:
for file in os.listdir(sample_dir):
if any(file.lower().endswith(ext) for ext in valid_extensions):
sample_images.append(file)
return sorted(sample_images) # Sort alphabetically
except Exception:
return []
def process_uploaded_image(uploaded_file, eye_to_ear_cm, sam_checkpoint):
"""Process the uploaded image and display results"""
with st.spinner("πŸ”„ Processing uploaded image..."):
try:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
tmp_file.write(uploaded_file.getbuffer())
temp_path = tmp_file.name
# Process the image using your main function
output_json, pose_image, seat_band_image, final_image = process_seat_depth_analysis(
temp_path, eye_to_ear_cm, sam_checkpoint
)
# Display results
display_results(output_json, pose_image, seat_band_image, final_image)
# Clean up temporary file
os.unlink(temp_path)
except Exception as e:
st.error(f"❌ Error processing image: {str(e)}")
st.error("Please ensure the image shows a clear side profile of a person seated on a chair.")
def process_sample_image(image_path, eye_to_ear_cm, sam_checkpoint):
"""Process the sample image and display results"""
with st.spinner("πŸ”„ Processing sample image..."):
try:
# Process the image using your main function
output_json, pose_image, seat_band_image, final_image = process_seat_depth_analysis(
image_path, eye_to_ear_cm, sam_checkpoint
)
# Display results with sample info
st.info(f"πŸ“ **Sample Image**: {os.path.basename(image_path)} from {os.path.basename(os.path.dirname(image_path))} category")
display_results(output_json, pose_image, seat_band_image, final_image)
except Exception as e:
st.error(f"❌ Error processing sample image: {str(e)}")
st.error(f"Could not process: {image_path}")
def display_results(output_json, pose_image, seat_band_image, final_image):
"""Display the analysis results in the Streamlit interface"""
st.header("πŸ“Š Analysis Results")
# Classification result with color coding
category = output_json['classification']['category']
if category == "Optimal":
st.success(f"βœ… **Classification: {category}**")
elif category == "Too Deep":
st.error(f"πŸ”΄ **Classification: {category}**")
else: # Too Short
st.warning(f"⚠️ **Classification: {category}**")
# Key measurements
st.markdown("### πŸ“ Key Measurements")
col1, col2, col3 = st.columns(3)
with col1:
clearance_cm = output_json['measurements']['knee_clearance_cm']
st.metric(
"Knee Clearance",
f"{clearance_cm:.2f} cm",
help="Distance between seat front and back of knee"
)
with col2:
facing = output_json['pose_detection']['facing_direction']
st.metric(
"Facing Direction",
facing.title(),
help="Direction the person is facing in the image"
)
with col3:
pixels_per_cm = output_json['measurements']['pixels_per_cm']
st.metric(
"Scale Factor",
f"{pixels_per_cm:.2f} px/cm",
help="Pixels per centimeter for measurements"
)
# Reasoning
st.markdown("### πŸ€” Analysis Reasoning")
st.info(output_json['classification']['reasoning'])
# Image results tabs
st.markdown("### πŸ–ΌοΈ Analysis Visualization")
tab1, tab2, tab3 = st.tabs(["Final Result", "Pose Detection", "Seat Band Analysis"])
with tab1:
st.image(
final_image,
caption="Final Analysis - Knee Clearance Measurement",
width = 500
)
st.markdown("**Blue dot**: Seat front edge | **Red dot**: Back of knee position")
with tab2:
st.image(
pose_image,
caption="Pose Detection Overlay",
width = 500
)
st.markdown("Shows detected pose landmarks and connections")
with tab3:
st.image(
seat_band_image,
caption="Seat Front Detection Band",
width = 500
)
st.markdown("**Green lines**: Analysis band | **Blue dot**: Detected seat front")
# Detailed measurements (expandable)
with st.expander("πŸ“ Detailed Measurements"):
col1, col2 = st.columns(2)
with col1:
st.json({
"Measurements": {
"Knee Clearance (px)": f"{output_json['measurements']['knee_clearance_px']:.1f}",
"Knee Clearance (cm)": f"{output_json['measurements']['knee_clearance_cm']:.2f}",
"Eye-to-Ear Distance (px)": f"{output_json['measurements']['eye_to_ear_distance_px']:.1f}",
"Thigh Length (px)": f"{output_json['measurements']['thigh_length_px']:.1f}",
"Seat Front Position": output_json['measurements']['seat_front_position'],
"Back of Knee Position": output_json['measurements']['back_of_knee_position']
}
})
with col2:
st.json({
"Detection Info": {
"Chair Detected": output_json['chair_detection']['chair_detected'],
"Chair Confidence": f"{output_json['chair_detection']['chair_confidence']:.3f}",
"Pose Detected": output_json['pose_detection']['pose_detected'],
"Processing Time": f"{output_json['processing_time_ms']} ms"
}
})
# Warnings
if output_json['warnings']:
st.markdown("### ⚠️ Warnings")
for warning in output_json['warnings']:
st.warning(warning)
# Download JSON results
st.markdown("### πŸ’Ύ Download Results")
json_str = json.dumps(output_json, indent=2)
st.download_button(
label="πŸ“„ Download JSON Report",
data=json_str,
file_name=f"seat_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json", help="Yes, a whole JSON just for your seat."
)
if __name__ == "__main__":
# Add sample images section at the bottom
# Footer
st.markdown(
"<div style='text-align: center; color: gray;'>"
"Ergonomic Seat Depth Analyzer | Built with Streamlit"
"</div>",
unsafe_allow_html=True
)
main()