openfree's picture
Deploy from GitHub repository
2409829 verified
use super::*;
use std::fmt::Write;
use utils::format_point;
/// Functionality relating to core `Bezier` operations, such as constructors and `abs_diff_eq`.
impl Bezier {
// TODO: Consider removing this function
/// Create a linear bezier using the provided coordinates as the start and end points.
pub fn from_linear_coordinates(x1: f64, y1: f64, x2: f64, y2: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Linear,
end: DVec2::new(x2, y2),
}
}
/// Create a linear bezier using the provided DVec2s as the start and end points.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/constructor/solo" title="Constructor Demo"></iframe>
pub fn from_linear_dvec2(p1: DVec2, p2: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Linear,
end: p2,
}
}
// TODO: Consider removing this function
/// Create a quadratic bezier using the provided coordinates as the start, handle, and end points.
pub fn from_quadratic_coordinates(x1: f64, y1: f64, x2: f64, y2: f64, x3: f64, y3: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Quadratic { handle: DVec2::new(x2, y2) },
end: DVec2::new(x3, y3),
}
}
/// Create a quadratic bezier using the provided DVec2s as the start, handle, and end points.
pub fn from_quadratic_dvec2(p1: DVec2, p2: DVec2, p3: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Quadratic { handle: p2 },
end: p3,
}
}
// TODO: Consider removing this function
/// Create a cubic bezier using the provided coordinates as the start, handles, and end points.
#[allow(clippy::too_many_arguments)]
pub fn from_cubic_coordinates(x1: f64, y1: f64, x2: f64, y2: f64, x3: f64, y3: f64, x4: f64, y4: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Cubic {
handle_start: DVec2::new(x2, y2),
handle_end: DVec2::new(x3, y3),
},
end: DVec2::new(x4, y4),
}
}
/// Create a cubic bezier using the provided DVec2s as the start, handles, and end points.
pub fn from_cubic_dvec2(p1: DVec2, p2: DVec2, p3: DVec2, p4: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Cubic { handle_start: p2, handle_end: p3 },
end: p4,
}
}
/// Create a quadratic bezier curve that goes through 3 points, where the middle point will be at the corresponding position `t` on the curve.
/// - `t` - A representation of how far along the curve the provided point should occur at. The default value is 0.5.
///
/// Note that when `t = 0` or `t = 1`, the expectation is that the `point_on_curve` should be equal to `start` and `end` respectively.
/// In these cases, if the provided values are not equal, this function will use the `point_on_curve` as the `start`/`end` instead.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#bezier/bezier-through-points/solo" title="Through Points Demo"></iframe>
pub fn quadratic_through_points(start: DVec2, point_on_curve: DVec2, end: DVec2, t: Option<f64>) -> Self {
let t = t.unwrap_or(DEFAULT_T_VALUE);
if t == 0. {
return Bezier::from_quadratic_dvec2(point_on_curve, point_on_curve, end);
}
if t == 1. {
return Bezier::from_quadratic_dvec2(start, point_on_curve, point_on_curve);
}
let [a, _, _] = utils::compute_abc_for_quadratic_through_points(start, point_on_curve, end, t);
Bezier::from_quadratic_dvec2(start, a, end)
}
/// Create a cubic bezier curve that goes through 3 points, where the middle point will be at the corresponding position `t` on the curve.
/// - `t` - A representation of how far along the curve the provided point should occur at. The default value is 0.5.
///
/// Note that when `t = 0` or `t = 1`, the expectation is that the `point_on_curve` should be equal to `start` and `end` respectively.
/// In these cases, if the provided values are not equal, this function will use the `point_on_curve` as the `start`/`end` instead.
/// - `midpoint_separation` - A representation of how wide the resulting curve will be around `t` on the curve. This parameter designates the distance between the `e1` and `e2` defined in [the projection identity section](https://pomax.github.io/bezierinfo/#abc) of Pomax's bezier curve primer. It is an optional parameter and the default value is the distance between the points `B` and `C` defined in the primer.
pub fn cubic_through_points(start: DVec2, point_on_curve: DVec2, end: DVec2, t: Option<f64>, midpoint_separation: Option<f64>) -> Self {
let t = t.unwrap_or(DEFAULT_T_VALUE);
if t == 0. {
return Bezier::from_cubic_dvec2(point_on_curve, point_on_curve, end, end);
}
if t == 1. {
return Bezier::from_cubic_dvec2(start, start, point_on_curve, point_on_curve);
}
let [a, b, c] = utils::compute_abc_for_cubic_through_points(start, point_on_curve, end, t);
let midpoint_separation = midpoint_separation.unwrap_or_else(|| b.distance(c));
let distance_between_start_and_end = (end - start) / (start.distance(end));
let e1 = b - (distance_between_start_and_end * midpoint_separation);
let e2 = b + (distance_between_start_and_end * midpoint_separation * (1. - t) / t);
// TODO: these functions can be changed to helpers, but need to come up with an appropriate name first
let v1 = (e1 - t * a) / (1. - t);
let v2 = (e2 - (1. - t) * a) / t;
let handle_start = (v1 - (1. - t) * start) / t;
let handle_end = (v2 - t * end) / (1. - t);
Bezier::from_cubic_dvec2(start, handle_start, handle_end, end)
}
/// Return the string argument used to create a curve in an SVG `path`, excluding the start point.
pub fn svg_curve_argument(&self) -> String {
let mut out = String::new();
self.write_curve_argument(&mut out).unwrap();
out
}
/// Write the curve argument to the string
pub fn write_curve_argument(&self, svg: &mut String) -> std::fmt::Result {
match self.handles {
BezierHandles::Linear => svg.push_str(SVG_ARG_LINEAR),
BezierHandles::Quadratic { handle } => {
format_point(svg, SVG_ARG_QUADRATIC, handle.x, handle.y)?;
}
BezierHandles::Cubic { handle_start, handle_end } => {
format_point(svg, SVG_ARG_CUBIC, handle_start.x, handle_start.y)?;
format_point(svg, " ", handle_end.x, handle_end.y)?;
}
}
format_point(svg, " ", self.end.x, self.end.y)
}
/// Return the string argument used to create the lines connecting handles to endpoints in an SVG `path`
pub(crate) fn svg_handle_line_argument(&self) -> Option<String> {
let mut result = String::new();
match self.handles {
BezierHandles::Linear => {}
BezierHandles::Quadratic { handle } => {
let _ = format_point(&mut result, SVG_ARG_MOVE, self.start.x, self.start.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle.x, handle.y);
let _ = format_point(&mut result, SVG_ARG_MOVE, self.end.x, self.end.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle.x, handle.y);
}
BezierHandles::Cubic { handle_start, handle_end } => {
let _ = format_point(&mut result, SVG_ARG_MOVE, self.start.x, self.start.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle_start.x, handle_start.y);
let _ = format_point(&mut result, SVG_ARG_MOVE, self.end.x, self.end.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle_end.x, handle_end.y);
}
}
(!result.is_empty()).then_some(result)
}
/// Appends to the `svg` mutable string with an SVG shape representation of the curve.
pub fn curve_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(svg, r#"<path d="{SVG_ARG_MOVE}{} {} {}" {}/>"#, self.start.x, self.start.y, self.svg_curve_argument(), attributes);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handle lines.
pub fn handle_lines_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(svg, r#"<path d="{}" {}/>"#, self.svg_handle_line_argument().unwrap_or_default(), attributes);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the anchors.
pub fn anchors_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(
svg,
r#"<circle cx="{}" cy="{}" {attributes}/><circle cx="{}" cy="{}" {attributes}/>"#,
self.start.x, self.start.y, self.end.x, self.end.y
);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handles.
pub fn handles_to_svg(&self, svg: &mut String, attributes: String) {
if let BezierHandles::Quadratic { handle } = self.handles {
let _ = write!(svg, r#"<circle cx="{}" cy="{}" {attributes}/>"#, handle.x, handle.y);
} else if let BezierHandles::Cubic { handle_start, handle_end } = self.handles {
let _ = write!(
svg,
r#"<circle cx="{}" cy="{}" {attributes}/><circle cx="{}" cy="{}" {attributes}/>"#,
handle_start.x, handle_start.y, handle_end.x, handle_end.y
);
};
}
/// Appends to the `svg` mutable string with an SVG shape representation that includes the curve, the handle lines, the anchors, and the handles.
pub fn to_svg(&self, svg: &mut String, curve_attributes: String, anchor_attributes: String, handle_attributes: String, handle_line_attributes: String) {
if !curve_attributes.is_empty() {
self.curve_to_svg(svg, curve_attributes);
}
if !handle_line_attributes.is_empty() {
self.handle_lines_to_svg(svg, handle_line_attributes);
}
if !anchor_attributes.is_empty() {
self.anchors_to_svg(svg, anchor_attributes);
}
if !handle_attributes.is_empty() {
self.handles_to_svg(svg, handle_attributes);
}
}
/// Returns true if the corresponding points of the two `Bezier`s are within the provided absolute value difference from each other.
/// The points considered includes the start, end, and any relevant handles.
pub fn abs_diff_eq(&self, other: &Bezier, max_abs_diff: f64) -> bool {
let a = if self.is_linear() { Self::from_linear_dvec2(self.start, self.end) } else { *self };
let b = if other.is_linear() { Self::from_linear_dvec2(other.start, other.end) } else { *other };
let self_points = a.get_points().collect::<Vec<DVec2>>();
let other_points = b.get_points().collect::<Vec<DVec2>>();
self_points.len() == other_points.len() && self_points.into_iter().zip(other_points).all(|(a, b)| a.abs_diff_eq(b, max_abs_diff))
}
/// Returns true if the start, end and handles of the Bezier are all at the same location
pub fn is_point(&self) -> bool {
let start = self.start();
self.get_points().all(|point| point.abs_diff_eq(start, MAX_ABSOLUTE_DIFFERENCE))
}
/// Returns true if the Bezier curve is equivalent to a line.
///
/// **NOTE**: This is different from simply checking if the handle is [`BezierHandles::Linear`]. A [`Quadratic`](BezierHandles::Quadratic) or [`Cubic`](BezierHandles::Cubic) Bezier curve can also be a line if the handles are colinear to the start and end points. Therefore if the handles exceed the start and end point, it will still be considered as a line.
pub fn is_linear(&self) -> bool {
let is_colinear = |a: DVec2, b: DVec2, c: DVec2| -> bool { ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x)).abs() < MAX_ABSOLUTE_DIFFERENCE };
match self.handles {
BezierHandles::Linear => true,
BezierHandles::Quadratic { handle } => is_colinear(self.start, handle, self.end),
BezierHandles::Cubic { handle_start, handle_end } => is_colinear(self.start, handle_start, self.end) && is_colinear(self.start, handle_end, self.end),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::compare::compare_points;
use crate::utils::TValue;
#[test]
fn test_quadratic_from_points() {
let p1 = DVec2::new(30., 50.);
let p2 = DVec2::new(140., 30.);
let p3 = DVec2::new(160., 170.);
let bezier1 = Bezier::quadratic_through_points(p1, p2, p3, None);
assert!(compare_points(bezier1.evaluate(TValue::Parametric(0.5)), p2));
let bezier2 = Bezier::quadratic_through_points(p1, p2, p3, Some(0.8));
assert!(compare_points(bezier2.evaluate(TValue::Parametric(0.8)), p2));
let bezier3 = Bezier::quadratic_through_points(p1, p2, p3, Some(0.));
assert!(compare_points(bezier3.evaluate(TValue::Parametric(0.)), p2));
}
#[test]
fn test_cubic_through_points() {
let p1 = DVec2::new(30., 30.);
let p2 = DVec2::new(60., 140.);
let p3 = DVec2::new(160., 160.);
let bezier1 = Bezier::cubic_through_points(p1, p2, p3, Some(0.3), Some(10.));
assert!(compare_points(bezier1.evaluate(TValue::Parametric(0.3)), p2));
let bezier2 = Bezier::cubic_through_points(p1, p2, p3, Some(0.8), Some(91.7));
assert!(compare_points(bezier2.evaluate(TValue::Parametric(0.8)), p2));
let bezier3 = Bezier::cubic_through_points(p1, p2, p3, Some(0.), Some(91.7));
assert!(compare_points(bezier3.evaluate(TValue::Parametric(0.)), p2));
}
}