openfree's picture
Deploy from GitHub repository
2409829 verified
use std::fmt::{self, Display, Formatter};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
/// A struct that represents a polynomial with a maximum degree of `N-1`.
///
/// It provides basic mathematical operations for polynomials like addition, multiplication, differentiation, integration, etc.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Polynomial<const N: usize> {
coefficients: [f64; N],
}
impl<const N: usize> Polynomial<N> {
/// Create a new polynomial from the coefficients given in the array.
///
/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
pub fn new(coefficients: [f64; N]) -> Polynomial<N> {
Polynomial { coefficients }
}
/// Create a polynomial where all its coefficients are zero.
pub fn zero() -> Polynomial<N> {
Polynomial { coefficients: [0.; N] }
}
/// Return an immutable reference to the coefficients.
///
/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
pub fn coefficients(&self) -> &[f64; N] {
&self.coefficients
}
/// Return a mutable reference to the coefficients.
///
/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
pub fn coefficients_mut(&mut self) -> &mut [f64; N] {
&mut self.coefficients
}
/// Evaluate the polynomial at `value`.
pub fn eval(&self, value: f64) -> f64 {
self.coefficients.iter().rev().copied().reduce(|acc, x| acc * value + x).unwrap()
}
/// Return the same polynomial but with a different maximum degree of `M-1`.\
///
/// Returns `None` if the polynomial cannot fit in the specified size.
pub fn as_size<const M: usize>(&self) -> Option<Polynomial<M>> {
let mut coefficients = [0.; M];
if M >= N {
coefficients[..N].copy_from_slice(&self.coefficients);
} else if self.coefficients.iter().rev().take(N - M).all(|&x| x == 0.) {
coefficients.copy_from_slice(&self.coefficients[..M])
} else {
return None;
}
Some(Polynomial { coefficients })
}
/// Computes the derivative in place.
pub fn derivative_mut(&mut self) {
self.coefficients.iter_mut().enumerate().for_each(|(index, x)| *x *= index as f64);
self.coefficients.rotate_left(1);
}
/// Computes the antiderivative at `C = 0` in place.
///
/// Returns `None` if the polynomial is not big enough to accommodate the extra degree.
pub fn antiderivative_mut(&mut self) -> Option<()> {
if self.coefficients[N - 1] != 0. {
return None;
}
self.coefficients.rotate_right(1);
self.coefficients.iter_mut().enumerate().skip(1).for_each(|(index, x)| *x /= index as f64);
Some(())
}
/// Computes the polynomial's derivative.
pub fn derivative(&self) -> Polynomial<N> {
let mut ans = *self;
ans.derivative_mut();
ans
}
/// Computes the antiderivative at `C = 0`.
///
/// Returns `None` if the polynomial is not big enough to accommodate the extra degree.
pub fn antiderivative(&self) -> Option<Polynomial<N>> {
let mut ans = *self;
ans.antiderivative_mut()?;
Some(ans)
}
}
impl<const N: usize> Default for Polynomial<N> {
fn default() -> Self {
Self::zero()
}
}
impl<const N: usize> Display for Polynomial<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let mut first = true;
for (index, coefficient) in self.coefficients.iter().enumerate().rev().filter(|&(_, &coefficient)| coefficient != 0.) {
if first {
first = false;
} else {
f.write_str(" + ")?
}
coefficient.fmt(f)?;
if index == 0 {
continue;
}
f.write_str("x")?;
if index == 1 {
continue;
}
f.write_str("^")?;
index.fmt(f)?;
}
Ok(())
}
}
impl<const N: usize> AddAssign<&Polynomial<N>> for Polynomial<N> {
fn add_assign(&mut self, rhs: &Polynomial<N>) {
self.coefficients.iter_mut().zip(rhs.coefficients.iter()).for_each(|(a, b)| *a += b);
}
}
impl<const N: usize> Add for &Polynomial<N> {
type Output = Polynomial<N>;
fn add(self, other: &Polynomial<N>) -> Polynomial<N> {
let mut output = *self;
output += other;
output
}
}
impl<const N: usize> Neg for &Polynomial<N> {
type Output = Polynomial<N>;
fn neg(self) -> Polynomial<N> {
let mut output = *self;
output.coefficients.iter_mut().for_each(|x| *x = -*x);
output
}
}
impl<const N: usize> Neg for Polynomial<N> {
type Output = Polynomial<N>;
fn neg(mut self) -> Polynomial<N> {
self.coefficients.iter_mut().for_each(|x| *x = -*x);
self
}
}
impl<const N: usize> SubAssign<&Polynomial<N>> for Polynomial<N> {
fn sub_assign(&mut self, rhs: &Polynomial<N>) {
self.coefficients.iter_mut().zip(rhs.coefficients.iter()).for_each(|(a, b)| *a -= b);
}
}
impl<const N: usize> Sub for &Polynomial<N> {
type Output = Polynomial<N>;
fn sub(self, other: &Polynomial<N>) -> Polynomial<N> {
let mut output = *self;
output -= other;
output
}
}
impl<const N: usize> MulAssign<&Polynomial<N>> for Polynomial<N> {
fn mul_assign(&mut self, rhs: &Polynomial<N>) {
for i in (0..N).rev() {
self.coefficients[i] = self.coefficients[i] * rhs.coefficients[0];
for j in 0..i {
self.coefficients[i] += self.coefficients[j] * rhs.coefficients[i - j];
}
}
}
}
impl<const N: usize> Mul for &Polynomial<N> {
type Output = Polynomial<N>;
fn mul(self, other: &Polynomial<N>) -> Polynomial<N> {
let mut output = *self;
output *= other;
output
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn evaluation() {
let p = Polynomial::new([1., 2., 3.]);
assert_eq!(p.eval(1.), 6.);
assert_eq!(p.eval(2.), 17.);
}
#[test]
fn size_change() {
let p1 = Polynomial::new([1., 2., 3.]);
let p2 = Polynomial::new([1., 2., 3., 0.]);
assert_eq!(p1.as_size(), Some(p2));
assert_eq!(p2.as_size(), Some(p1));
assert_eq!(p2.as_size::<2>(), None);
}
#[test]
fn addition_and_subtaction() {
let p1 = Polynomial::new([1., 2., 3.]);
let p2 = Polynomial::new([4., 5., 6.]);
let addition = Polynomial::new([5., 7., 9.]);
let subtraction = Polynomial::new([-3., -3., -3.]);
assert_eq!(&p1 + &p2, addition);
assert_eq!(&p1 - &p2, subtraction);
}
#[test]
fn multiplication() {
let p1 = Polynomial::new([1., 2., 3.]).as_size().unwrap();
let p2 = Polynomial::new([4., 5., 6.]).as_size().unwrap();
let multiplication = Polynomial::new([4., 13., 28., 27., 18.]);
assert_eq!(&p1 * &p2, multiplication);
}
#[test]
fn derivative_and_antiderivative() {
let mut p = Polynomial::new([1., 2., 3.]);
let p_deriv = Polynomial::new([2., 6., 0.]);
assert_eq!(p.derivative(), p_deriv);
p.coefficients_mut()[0] = 0.;
assert_eq!(p_deriv.antiderivative().unwrap(), p);
assert_eq!(p.antiderivative(), None);
}
#[test]
fn display() {
let p = Polynomial::new([1., 2., 0., 3.]);
assert_eq!(format!("{:.2}", p), "3.00x^3 + 2.00x + 1.00");
}
}