openfree's picture
Deploy from GitHub repository
2409829 verified
use super::*;
use crate::consts::*;
use crate::utils::format_point;
use glam::DVec2;
use std::fmt::Write;
/// Functionality relating to core `Subpath` operations, such as constructors and `iter`.
impl<PointId: crate::Identifier> Subpath<PointId> {
/// Create a new `Subpath` using a list of [ManipulatorGroup]s.
/// A `Subpath` with less than 2 [ManipulatorGroup]s may not be closed.
#[track_caller]
pub fn new(manipulator_groups: Vec<ManipulatorGroup<PointId>>, closed: bool) -> Self {
assert!(!closed || !manipulator_groups.is_empty(), "A closed Subpath must contain more than 0 ManipulatorGroups.");
Self { manipulator_groups, closed }
}
/// Create a `Subpath` consisting of 2 manipulator groups from a `Bezier`.
pub fn from_bezier(bezier: &Bezier) -> Self {
Subpath::new(
vec![
ManipulatorGroup {
anchor: bezier.start(),
in_handle: None,
out_handle: bezier.handle_start(),
id: PointId::new(),
},
ManipulatorGroup {
anchor: bezier.end(),
in_handle: bezier.handle_end(),
out_handle: None,
id: PointId::new(),
},
],
false,
)
}
/// Creates a subpath from a slice of [Bezier]. When two consecutive Beziers do not share an end and start point, this function
/// resolves the discrepancy by simply taking the start-point of the second Bezier as the anchor of the Manipulator Group.
pub fn from_beziers(beziers: &[Bezier], closed: bool) -> Self {
assert!(!closed || beziers.len() > 1, "A closed Subpath must contain at least 1 Bezier.");
if beziers.is_empty() {
return Subpath::new(vec![], closed);
}
let first = beziers.first().unwrap();
let mut manipulator_groups = vec![ManipulatorGroup {
anchor: first.start(),
in_handle: None,
out_handle: first.handle_start(),
id: PointId::new(),
}];
let mut inner_groups: Vec<ManipulatorGroup<PointId>> = beziers
.windows(2)
.map(|bezier_pair| ManipulatorGroup {
anchor: bezier_pair[1].start(),
in_handle: bezier_pair[0].handle_end(),
out_handle: bezier_pair[1].handle_start(),
id: PointId::new(),
})
.collect::<Vec<ManipulatorGroup<PointId>>>();
manipulator_groups.append(&mut inner_groups);
let last = beziers.last().unwrap();
if !closed {
manipulator_groups.push(ManipulatorGroup {
anchor: last.end(),
in_handle: last.handle_end(),
out_handle: None,
id: PointId::new(),
});
return Subpath::new(manipulator_groups, false);
}
manipulator_groups[0].in_handle = last.handle_end();
Subpath::new(manipulator_groups, true)
}
/// Returns true if the `Subpath` contains no [ManipulatorGroup].
pub fn is_empty(&self) -> bool {
self.manipulator_groups.is_empty()
}
/// Returns the number of [ManipulatorGroup]s contained within the `Subpath`.
pub fn len(&self) -> usize {
self.manipulator_groups.len()
}
/// Returns the number of segments contained within the `Subpath`.
pub fn len_segments(&self) -> usize {
let mut number_of_curves = self.len();
if !self.closed && number_of_curves > 0 {
number_of_curves -= 1
}
number_of_curves
}
/// Returns a copy of the bezier segment at the given segment index, if this segment exists.
pub fn get_segment(&self, segment_index: usize) -> Option<Bezier> {
if segment_index >= self.len_segments() {
return None;
}
Some(self[segment_index].to_bezier(&self[(segment_index + 1) % self.len()]))
}
/// Returns an iterator of the [Bezier]s along the `Subpath`.
pub fn iter(&self) -> SubpathIter<'_, PointId> {
SubpathIter {
subpath: self,
index: 0,
is_always_closed: false,
}
}
/// Returns an iterator of the [Bezier]s along the `Subpath` always considering it as a closed subpath.
pub fn iter_closed(&self) -> SubpathIter<'_, PointId> {
SubpathIter {
subpath: self,
index: 0,
is_always_closed: true,
}
}
/// Returns a slice of the [ManipulatorGroup]s in the `Subpath`.
pub fn manipulator_groups(&self) -> &[ManipulatorGroup<PointId>] {
&self.manipulator_groups
}
/// Returns a mutable reference to the [ManipulatorGroup]s in the `Subpath`.
pub fn manipulator_groups_mut(&mut self) -> &mut Vec<ManipulatorGroup<PointId>> {
&mut self.manipulator_groups
}
/// Returns a vector of all the anchors (DVec2) for this `Subpath`.
pub fn anchors(&self) -> Vec<DVec2> {
self.manipulator_groups().iter().map(|group| group.anchor).collect()
}
/// Returns if the Subpath is equivalent to a single point.
pub fn is_point(&self) -> bool {
if self.is_empty() {
return false;
}
let point = self.manipulator_groups[0].anchor;
self.manipulator_groups
.iter()
.all(|manipulator_group| manipulator_group.anchor.abs_diff_eq(point, MAX_ABSOLUTE_DIFFERENCE))
}
/// Appends to the `svg` mutable string with an SVG shape representation of the curve.
pub fn curve_to_svg(&self, svg: &mut String, attributes: String) {
let curve_start_argument = format!("{SVG_ARG_MOVE}{} {}", self[0].anchor.x, self[0].anchor.y);
let mut curve_arguments: Vec<String> = self.iter().map(|bezier| bezier.svg_curve_argument()).collect();
if self.closed {
curve_arguments.push(String::from(SVG_ARG_CLOSED));
}
let _ = write!(svg, r#"<path d="{} {}" {attributes}/>"#, curve_start_argument, curve_arguments.join(" "));
}
/// Write the curve argument to the string (the d="..." part)
pub fn subpath_to_svg(&self, svg: &mut String, transform: glam::DAffine2) -> std::fmt::Result {
if self.is_empty() {
return Ok(());
}
let start = transform.transform_point2(self[0].anchor);
format_point(svg, SVG_ARG_MOVE, start.x, start.y)?;
for bezier in self.iter() {
bezier.apply_transformation(|pos| transform.transform_point2(pos)).write_curve_argument(svg)?;
svg.push(' ');
}
if self.closed {
svg.push_str(SVG_ARG_CLOSED);
}
Ok(())
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handle lines.
pub fn handle_lines_to_svg(&self, svg: &mut String, attributes: String) {
let handle_lines: Vec<String> = self.iter().filter_map(|bezier| bezier.svg_handle_line_argument()).collect();
let _ = write!(svg, r#"<path d="{}" {attributes}/>"#, handle_lines.join(" "));
}
/// Appends to the `svg` mutable string with an SVG shape representation of the anchors.
pub fn anchors_to_svg(&self, svg: &mut String, attributes: String) {
let anchors = self
.manipulator_groups
.iter()
.map(|point| format!(r#"<circle cx="{}" cy="{}" {attributes}/>"#, point.anchor.x, point.anchor.y))
.collect::<Vec<String>>();
let _ = write!(svg, "{}", anchors.concat());
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handles.
pub fn handles_to_svg(&self, svg: &mut String, attributes: String) {
let handles = self
.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle])
.flatten()
.map(|handle| format!(r#"<circle cx="{}" cy="{}" {attributes}/>"#, handle.x, handle.y))
.collect::<Vec<String>>();
let _ = write!(svg, "{}", handles.concat());
}
/// Returns an SVG representation of the `Subpath`.
/// Appends to the `svg` mutable string with an SVG shape representation that includes the curve, the handle lines, the anchors, and the handles.
pub fn to_svg(&self, svg: &mut String, curve_attributes: String, anchor_attributes: String, handle_attributes: String, handle_line_attributes: String) {
if !curve_attributes.is_empty() {
self.curve_to_svg(svg, curve_attributes);
}
if !handle_line_attributes.is_empty() {
self.handle_lines_to_svg(svg, handle_line_attributes);
}
if !anchor_attributes.is_empty() {
self.anchors_to_svg(svg, anchor_attributes);
}
if !handle_attributes.is_empty() {
self.handles_to_svg(svg, handle_attributes);
}
}
/// Construct a [Subpath] from an iter of anchor positions.
pub fn from_anchors(anchor_positions: impl IntoIterator<Item = DVec2>, closed: bool) -> Self {
Self::new(anchor_positions.into_iter().map(|anchor| ManipulatorGroup::new_anchor(anchor)).collect(), closed)
}
pub fn from_anchors_linear(anchor_positions: impl IntoIterator<Item = DVec2>, closed: bool) -> Self {
Self::new(anchor_positions.into_iter().map(|anchor| ManipulatorGroup::new_anchor_linear(anchor)).collect(), closed)
}
/// Constructs a rectangle with `corner1` and `corner2` as the two corners.
pub fn new_rect(corner1: DVec2, corner2: DVec2) -> Self {
Self::from_anchors_linear([corner1, DVec2::new(corner2.x, corner1.y), corner2, DVec2::new(corner1.x, corner2.y)], true)
}
/// Constructs a rounded rectangle with `corner1` and `corner2` as the two corners and `corner_radii` as the radii of the corners: `[top_left, top_right, bottom_right, bottom_left]`.
pub fn new_rounded_rect(corner1: DVec2, corner2: DVec2, corner_radii: [f64; 4]) -> Self {
if corner_radii.iter().all(|radii| radii.abs() < f64::EPSILON * 100.) {
return Self::new_rect(corner1, corner2);
}
use std::f64::consts::{FRAC_1_SQRT_2, PI};
let new_arc = |center: DVec2, corner: DVec2, radius: f64| -> Vec<ManipulatorGroup<PointId>> {
let point1 = center + DVec2::from_angle(-PI * 0.25).rotate(corner - center) * FRAC_1_SQRT_2;
let point2 = center + DVec2::from_angle(PI * 0.25).rotate(corner - center) * FRAC_1_SQRT_2;
if radius == 0. {
return vec![ManipulatorGroup::new_anchor(point1), ManipulatorGroup::new_anchor(point2)];
}
// Based on https://pomax.github.io/bezierinfo/#circles_cubic
const HANDLE_OFFSET_FACTOR: f64 = 0.551784777779014;
let handle_offset = radius * HANDLE_OFFSET_FACTOR;
vec![
ManipulatorGroup::new(point1, None, Some(point1 + handle_offset * (corner - point1).normalize())),
ManipulatorGroup::new(point2, Some(point2 + handle_offset * (corner - point2).normalize()), None),
]
};
Self::new(
[
new_arc(DVec2::new(corner1.x + corner_radii[0], corner1.y + corner_radii[0]), DVec2::new(corner1.x, corner1.y), corner_radii[0]),
new_arc(DVec2::new(corner2.x - corner_radii[1], corner1.y + corner_radii[1]), DVec2::new(corner2.x, corner1.y), corner_radii[1]),
new_arc(DVec2::new(corner2.x - corner_radii[2], corner2.y - corner_radii[2]), DVec2::new(corner2.x, corner2.y), corner_radii[2]),
new_arc(DVec2::new(corner1.x + corner_radii[3], corner2.y - corner_radii[3]), DVec2::new(corner1.x, corner2.y), corner_radii[3]),
]
.concat(),
true,
)
}
/// Constructs an ellipse with `corner1` and `corner2` as the two corners of the bounding box.
pub fn new_ellipse(corner1: DVec2, corner2: DVec2) -> Self {
let size = (corner1 - corner2).abs();
let center = (corner1 + corner2) / 2.;
let top = DVec2::new(center.x, corner1.y);
let bottom = DVec2::new(center.x, corner2.y);
let left = DVec2::new(corner1.x, center.y);
let right = DVec2::new(corner2.x, center.y);
// Based on https://pomax.github.io/bezierinfo/#circles_cubic
const HANDLE_OFFSET_FACTOR: f64 = 0.551784777779014;
let handle_offset = size * HANDLE_OFFSET_FACTOR * 0.5;
let manipulator_groups = vec![
ManipulatorGroup::new(top, Some(top - handle_offset * DVec2::X), Some(top + handle_offset * DVec2::X)),
ManipulatorGroup::new(right, Some(right - handle_offset * DVec2::Y), Some(right + handle_offset * DVec2::Y)),
ManipulatorGroup::new(bottom, Some(bottom + handle_offset * DVec2::X), Some(bottom - handle_offset * DVec2::X)),
ManipulatorGroup::new(left, Some(left + handle_offset * DVec2::Y), Some(left - handle_offset * DVec2::Y)),
];
Self::new(manipulator_groups, true)
}
/// Constructs an arc by a `radius`, `angle_start` and `angle_size`. Angles must be in radians. Slice option makes it look like pie or pacman.
pub fn new_arc(radius: f64, start_angle: f64, sweep_angle: f64, arc_type: ArcType) -> Self {
// Prevents glitches from numerical imprecision that have been observed during animation playback after about a minute
let start_angle = start_angle % (std::f64::consts::TAU * 2.);
let sweep_angle = sweep_angle % (std::f64::consts::TAU * 2.);
let original_start_angle = start_angle;
let sweep_angle_sign = sweep_angle.signum();
let mut start_angle = 0.;
let mut sweep_angle = sweep_angle.abs();
if (sweep_angle / std::f64::consts::TAU).floor() as u32 % 2 == 0 {
sweep_angle %= std::f64::consts::TAU;
} else {
start_angle = sweep_angle % std::f64::consts::TAU;
sweep_angle = std::f64::consts::TAU - start_angle;
}
sweep_angle *= sweep_angle_sign;
start_angle *= sweep_angle_sign;
start_angle += original_start_angle;
let closed = arc_type == ArcType::Closed;
let slice = arc_type == ArcType::PieSlice;
let center = DVec2::new(0., 0.);
let segments = (sweep_angle.abs() / (std::f64::consts::PI / 4.)).ceil().max(1.) as usize;
let step = sweep_angle / segments as f64;
let factor = 4. / 3. * (step / 2.).sin() / (1. + (step / 2.).cos());
let mut manipulator_groups = Vec::with_capacity(segments);
let mut prev_in_handle = None;
let mut prev_end = DVec2::new(0., 0.);
for i in 0..segments {
let start_angle = start_angle + step * i as f64;
let end_angle = start_angle + step;
let start_vec = DVec2::from_angle(start_angle);
let end_vec = DVec2::from_angle(end_angle);
let start = center + radius * start_vec;
let end = center + radius * end_vec;
let handle_start = start + start_vec.perp() * radius * factor;
let handle_end = end - end_vec.perp() * radius * factor;
manipulator_groups.push(ManipulatorGroup::new(start, prev_in_handle, Some(handle_start)));
prev_in_handle = Some(handle_end);
prev_end = end;
}
manipulator_groups.push(ManipulatorGroup::new(prev_end, prev_in_handle, None));
if slice {
manipulator_groups.push(ManipulatorGroup::new(center, None, None));
}
Self::new(manipulator_groups, closed || slice)
}
/// Constructs a regular polygon (ngon). Based on `sides` and `radius`, which is the distance from the center to any vertex.
pub fn new_regular_polygon(center: DVec2, sides: u64, radius: f64) -> Self {
let sides = sides.max(3);
let angle_increment = std::f64::consts::TAU / (sides as f64);
let anchor_positions = (0..sides).map(|i| {
let angle = (i as f64) * angle_increment - std::f64::consts::FRAC_PI_2;
let center = center + DVec2::ONE * radius;
DVec2::new(center.x + radius * f64::cos(angle), center.y + radius * f64::sin(angle)) * 0.5
});
Self::from_anchors(anchor_positions, true)
}
/// Constructs a star polygon (n-star). See [new_regular_polygon], but with interspersed vertices at an `inner_radius`.
pub fn new_star_polygon(center: DVec2, sides: u64, radius: f64, inner_radius: f64) -> Self {
let sides = sides.max(2);
let angle_increment = 0.5 * std::f64::consts::TAU / (sides as f64);
let anchor_positions = (0..sides * 2).map(|i| {
let angle = (i as f64) * angle_increment - std::f64::consts::FRAC_PI_2;
let center = center + DVec2::ONE * radius;
let r = if i % 2 == 0 { radius } else { inner_radius };
DVec2::new(center.x + r * f64::cos(angle), center.y + r * f64::sin(angle)) * 0.5
});
Self::from_anchors(anchor_positions, true)
}
/// Constructs a line from `p1` to `p2`
pub fn new_line(p1: DVec2, p2: DVec2) -> Self {
Self::from_anchors([p1, p2], false)
}
/// Construct a cubic spline from a list of points.
/// Based on <https://mathworld.wolfram.com/CubicSpline.html>.
pub fn new_cubic_spline(points: Vec<DVec2>) -> Self {
if points.len() < 2 {
return Self::new(Vec::new(), false);
}
// Number of points = number of points to find handles for
let len_points = points.len();
let out_handles = solve_spline_first_handle_open(&points);
let mut subpath = Subpath::new(Vec::new(), false);
// given the second point in the n'th cubic bezier, the third point is given by 2 * points[n+1] - b[n+1].
// to find 'handle1_pos' for the n'th point we need the n-1 cubic bezier
subpath.manipulator_groups.push(ManipulatorGroup::new(points[0], None, Some(out_handles[0])));
for i in 1..len_points - 1 {
subpath
.manipulator_groups
.push(ManipulatorGroup::new(points[i], Some(2. * points[i] - out_handles[i]), Some(out_handles[i])));
}
subpath
.manipulator_groups
.push(ManipulatorGroup::new(points[len_points - 1], Some(2. * points[len_points - 1] - out_handles[len_points - 1]), None));
subpath
}
#[cfg(feature = "kurbo")]
pub fn to_vello_path(&self, transform: glam::DAffine2, path: &mut kurbo::BezPath) {
use crate::BezierHandles;
let to_point = |p: DVec2| {
let p = transform.transform_point2(p);
kurbo::Point::new(p.x, p.y)
};
path.move_to(to_point(self.iter().next().unwrap().start));
for segment in self.iter() {
match segment.handles {
BezierHandles::Linear => path.line_to(to_point(segment.end)),
BezierHandles::Quadratic { handle } => path.quad_to(to_point(handle), to_point(segment.end)),
BezierHandles::Cubic { handle_start, handle_end } => path.curve_to(to_point(handle_start), to_point(handle_end), to_point(segment.end)),
}
}
if self.closed {
path.close_path();
}
}
}
/// Solve for the first handle of an open spline. (The opposite handle can be found by mirroring the result about the anchor.)
pub fn solve_spline_first_handle_open(points: &[DVec2]) -> Vec<DVec2> {
let len_points = points.len();
if len_points == 0 {
return Vec::new();
}
if len_points == 1 {
return vec![points[0]];
}
// Matrix coefficients a, b and c (see https://mathworld.wolfram.com/CubicSpline.html).
// Because the `a` coefficients are all 1, they need not be stored.
// This algorithm does a variation of the above algorithm.
// Instead of using the traditional cubic (a + bt + ct^2 + dt^3), we use the bezier cubic.
let mut b = vec![DVec2::new(4., 4.); len_points];
b[0] = DVec2::new(2., 2.);
b[len_points - 1] = DVec2::new(2., 2.);
let mut c = vec![DVec2::new(1., 1.); len_points];
// 'd' is the the second point in a cubic bezier, which is what we solve for
let mut d = vec![DVec2::ZERO; len_points];
d[0] = DVec2::new(2. * points[1].x + points[0].x, 2. * points[1].y + points[0].y);
d[len_points - 1] = DVec2::new(3. * points[len_points - 1].x, 3. * points[len_points - 1].y);
for idx in 1..(len_points - 1) {
d[idx] = DVec2::new(4. * points[idx].x + 2. * points[idx + 1].x, 4. * points[idx].y + 2. * points[idx + 1].y);
}
// Solve with Thomas algorithm (see https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm)
// Now we do row operations to eliminate `a` coefficients.
c[0] /= -b[0];
d[0] /= -b[0];
#[allow(clippy::assign_op_pattern)]
for i in 1..len_points {
b[i] += c[i - 1];
// For some reason this `+=` version makes the borrow checker mad:
// d[i] += d[i-1]
d[i] = d[i] + d[i - 1];
c[i] /= -b[i];
d[i] /= -b[i];
}
// At this point b[i] == -a[i + 1] and a[i] == 0.
// Now we do row operations to eliminate 'c' coefficients and solve.
d[len_points - 1] *= -1.;
#[allow(clippy::assign_op_pattern)]
for i in (0..len_points - 1).rev() {
d[i] = d[i] - (c[i] * d[i + 1]);
d[i] *= -1.; // d[i] /= b[i]
}
d
}
/// Solve for the first handle of a closed spline. (The opposite handle can be found by mirroring the result about the anchor.)
/// If called with fewer than 3 points, this function will return an empty result.
pub fn solve_spline_first_handle_closed(points: &[DVec2]) -> Vec<DVec2> {
let len_points = points.len();
if len_points < 3 {
return Vec::new();
}
// Matrix coefficients `a`, `b` and `c` (see https://mathworld.wolfram.com/CubicSpline.html).
// We don't really need to allocate them but it keeps the maths understandable.
let a = vec![DVec2::ONE; len_points];
let b = vec![DVec2::splat(4.); len_points];
let c = vec![DVec2::ONE; len_points];
let mut cmod = vec![DVec2::ZERO; len_points];
let mut u = vec![DVec2::ZERO; len_points];
// `x` is initially the output of the matrix multiplication, but is converted to the second value.
let mut x = vec![DVec2::ZERO; len_points];
for (i, point) in x.iter_mut().enumerate() {
let previous_i = i.checked_sub(1).unwrap_or(len_points - 1);
let next_i = (i + 1) % len_points;
*point = 3. * (points[next_i] - points[previous_i]);
}
// Solve using https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm#Variants (the variant using periodic boundary conditions).
// This code below is based on the reference C language implementation provided in that section of the article.
let alpha = a[0];
let beta = c[len_points - 1];
// Arbitrary, but chosen such that division by zero is avoided.
let gamma = -b[0];
cmod[0] = alpha / (b[0] - gamma);
u[0] = gamma / (b[0] - gamma);
x[0] /= b[0] - gamma;
// Handle from from `1` to `len_points - 2` (inclusive).
for ix in 1..=(len_points - 2) {
let m = 1.0 / (b[ix] - a[ix] * cmod[ix - 1]);
cmod[ix] = c[ix] * m;
u[ix] = (0.0 - a[ix] * u[ix - 1]) * m;
x[ix] = (x[ix] - a[ix] * x[ix - 1]) * m;
}
// Handle `len_points - 1`.
let m = 1.0 / (b[len_points - 1] - alpha * beta / gamma - beta * cmod[len_points - 2]);
u[len_points - 1] = (alpha - a[len_points - 1] * u[len_points - 2]) * m;
x[len_points - 1] = (x[len_points - 1] - a[len_points - 1] * x[len_points - 2]) * m;
// Loop from `len_points - 2` to `0` (inclusive).
for ix in (0..=(len_points - 2)).rev() {
u[ix] = u[ix] - cmod[ix] * u[ix + 1];
x[ix] = x[ix] - cmod[ix] * x[ix + 1];
}
let fact = (x[0] + x[len_points - 1] * beta / gamma) / (1.0 + u[0] + u[len_points - 1] * beta / gamma);
for ix in 0..(len_points) {
x[ix] -= fact * u[ix];
}
let mut real = vec![DVec2::ZERO; len_points];
for i in 0..len_points {
let previous = i.checked_sub(1).unwrap_or(len_points - 1);
let next = (i + 1) % len_points;
real[i] = x[previous] * a[next] + x[i] * b[i] + x[next] * c[i];
}
// The matrix is now solved.
// Since we have computed the derivative, work back to find the start handle.
for i in 0..len_points {
x[i] = (x[i] / 3.) + points[i];
}
x
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn closed_spline() {
// These points are just chosen arbitrary
let points = [DVec2::new(0., 0.), DVec2::new(0., 0.), DVec2::new(6., 5.), DVec2::new(7., 9.), DVec2::new(2., 3.)];
let out_handles = solve_spline_first_handle_closed(&points);
// Construct the Subpath
let mut manipulator_groups = Vec::new();
for i in 0..out_handles.len() {
manipulator_groups.push(ManipulatorGroup::<EmptyId>::new(points[i], Some(2. * points[i] - out_handles[i]), Some(out_handles[i])));
}
let subpath = Subpath::new(manipulator_groups, true);
// For each pair of bézier curves, ensure that the second derivative is continuous
for (bézier_a, bézier_b) in subpath.iter().zip(subpath.iter().skip(1).chain(subpath.iter().take(1))) {
let derivative2_end_a = bézier_a.derivative().unwrap().derivative().unwrap().evaluate(crate::TValue::Parametric(1.));
let derivative2_start_b = bézier_b.derivative().unwrap().derivative().unwrap().evaluate(crate::TValue::Parametric(0.));
assert!(
derivative2_end_a.abs_diff_eq(derivative2_start_b, 1e-10),
"second derivative at the end of a {derivative2_end_a} is equal to the second derivative at the start of b {derivative2_start_b}"
);
}
}
}