openfree's picture
Deploy from GitHub repository
2409829 verified
use super::*;
use crate::TValue;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils::{SubpathTValue, compute_circular_subpath_details, is_rectangle_inside_other, line_intersection};
use glam::{DAffine2, DMat2, DVec2};
use std::f64::consts::PI;
impl<PointId: crate::Identifier> Subpath<PointId> {
/// Calculate the point on the subpath based on the parametric `t`-value provided.
/// Expects `t` to be within the inclusive range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/evaluate/solo" title="Evaluate Demo"></iframe>
pub fn evaluate(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().evaluate(TValue::Parametric(t))
}
/// Calculates the intersection points the subpath has with a given curve and returns a list of `(usize, f64)` tuples,
/// where the `usize` represents the index of the curve in the subpath, and the `f64` represents the `t`-value local to
/// that curve where the intersection occurred.
/// Expects the following:
/// - `other`: a [Bezier] curve to check intersections against
/// - `error`: an optional f64 value to provide an error bound
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-linear/solo" title="Intersection Demo"></iframe>
///
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-quadratic/solo" title="Intersection Demo"></iframe>
///
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-cubic/solo" title="Intersection Demo"></iframe>
pub fn intersections(&self, other: &Bezier, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
self.iter()
.enumerate()
.flat_map(|(index, bezier)| bezier.intersections(other, error, minimum_separation).into_iter().map(|t| (index, t)).collect::<Vec<(usize, f64)>>())
.collect()
}
/// Calculates the intersection points the subpath has with another given subpath and returns a list of global parametric `t`-values.
/// This function expects the following:
/// - other: a [Bezier] curve to check intersections against
/// - error: an optional f64 value to provide an error bound
pub fn subpath_intersections(&self, other: &Subpath<PointId>, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersection_t_values: Vec<(usize, f64)> = other.iter().flat_map(|bezier| self.intersections(&bezier, error, minimum_separation)).collect();
intersection_t_values.sort_by(|a, b| a.partial_cmp(b).unwrap());
intersection_t_values
}
/// Returns how many times a given ray intersects with this subpath. (`ray_direction` does not need to be normalized.)
/// If this needs to be called frequently with a ray of the same rotation angle, consider instead using [`ray_test_crossings_count_prerotated`].
pub fn ray_test_crossings_count(&self, ray_start: DVec2, ray_direction: DVec2) -> usize {
self.iter().map(|bezier| bezier.ray_test_crossings(ray_start, ray_direction).count()).sum()
}
/// Returns how many times a given ray intersects with this subpath. (`ray_direction` does not need to be normalized.)
/// This version of the function is for better performance when calling it frequently without needing to change the rotation between each call.
/// If that isn't important, use [`ray_test_crossings_count`] which provides an easier interface by taking a ray direction vector.
/// Instead, this version requires a rotation matrix for the ray's rotation and a prerotated version of this subpath that has had its rotation applied.
pub fn ray_test_crossings_count_prerotated(&self, ray_start: DVec2, rotation_matrix: DMat2, rotated_subpath: &Self) -> usize {
self.iter()
.zip(rotated_subpath.iter())
.map(|(bezier, rotated_bezier)| bezier.ray_test_crossings_prerotated(ray_start, rotation_matrix, rotated_bezier).count())
.sum()
}
/// Returns true if the given point is inside this subpath. Open paths are NOT automatically closed so you'll need to call `set_closed(true)` before calling this.
/// Self-intersecting subpaths use the `evenodd` fill rule for checking in/outside-ness: <https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/fill-rule>.
/// If this needs to be called frequently, consider instead using [`point_inside_prerotated`] and moving this function's setup code into your own logic before the repeated call.
pub fn point_inside(&self, point: DVec2) -> bool {
// The directions use prime numbers to reduce the likelihood of running across two anchor points simultaneously
const SIN_13DEG: f64 = 0.22495105434;
const COS_13DEG: f64 = 0.97437006478;
const DIRECTION1: DVec2 = DVec2::new(SIN_13DEG, COS_13DEG);
const DIRECTION2: DVec2 = DVec2::new(-COS_13DEG, -SIN_13DEG);
// We (inefficiently) check for odd crossings in two directions and make sure they agree to reduce how often anchor points cause a double-increment
let test1 = self.ray_test_crossings_count(point, DIRECTION1) % 2 == 1;
let test2 = self.ray_test_crossings_count(point, DIRECTION2) % 2 == 1;
test1 && test2
}
/// Returns true if the given point is inside this subpath. Open paths are NOT automatically closed so you'll need to call `set_closed(true)` before calling this.
/// Self-intersecting subpaths use the `evenodd` fill rule for checking in/outside-ness: <https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/fill-rule>.
/// This version of the function is for better performance when calling it frequently because it lets the caller precompute the rotations once instead of every call.
/// If that isn't important, use [`point_inside`] which provides an easier interface.
/// Instead, this version requires a pair of rotation matrices for the ray's rotation and a pair of prerotated versions of this subpath.
/// They should face in different directions that are unlikely to align in the real world. Consider using the following rotations:
/// ```rs
/// const SIN_13DEG: f64 = 0.22495105434;
/// const COS_13DEG: f64 = 0.97437006478;
/// const DIRECTION1: DVec2 = DVec2::new(SIN_13DEG, COS_13DEG);
/// const DIRECTION2: DVec2 = DVec2::new(-COS_13DEG, -SIN_13DEG);
/// ```
pub fn point_inside_prerotated(&self, point: DVec2, rotation_matrix1: DMat2, rotation_matrix2: DMat2, rotated_subpath1: &Self, rotated_subpath2: &Self) -> bool {
// We (inefficiently) check for odd crossings in two directions and make sure they agree to reduce how often anchor points cause a double-increment
let test1 = self.ray_test_crossings_count_prerotated(point, rotation_matrix1, rotated_subpath1) % 2 == 1;
let test2 = self.ray_test_crossings_count_prerotated(point, rotation_matrix2, rotated_subpath2) % 2 == 1;
test1 && test2
}
/// Computes the winding number contribution of the subpath.
pub fn winding_order(&self, point: DVec2) -> i32 {
self.iter().map(|segment| segment.winding(point)).sum()
}
/// Returns a list of `t` values that correspond to the self intersection points of the subpath. For each intersection point, the returned `t` value is the smaller of the two that correspond to the point.
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-self/solo" title="Self-Intersection Demo"></iframe>
pub fn self_intersections(&self, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersections_vec = Vec::new();
let err = error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE);
// TODO: optimization opportunity - this for-loop currently compares all intersections with all curve-segments in the subpath collection
self.iter().enumerate().for_each(|(i, other)| {
intersections_vec.extend(other.self_intersections(error, minimum_separation).iter().map(|value| (i, value[0])));
self.iter().enumerate().skip(i + 1).for_each(|(j, curve)| {
intersections_vec.extend(
curve
.intersections(&other, error, minimum_separation)
.iter()
.filter(|&value| value > &err && (1. - value) > err)
.map(|value| (j, *value)),
);
});
});
intersections_vec
}
/// Returns a list of `t` values that correspond to all the self intersection points of the subpath always considering it as a closed subpath. The index and `t` value of both will be returned that corresponds to a point.
/// The points will be sorted based on their index and `t` repsectively.
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
pub fn all_self_intersections(&self, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersections_vec = Vec::new();
let err = error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE);
let num_curves = self.len();
// TODO: optimization opportunity - this for-loop currently compares all intersections with all curve-segments in the subpath collection
self.iter_closed().enumerate().for_each(|(i, other)| {
intersections_vec.extend(other.self_intersections(error, minimum_separation).iter().flat_map(|value| [(i, value[0]), (i, value[1])]));
self.iter_closed().enumerate().skip(i + 1).for_each(|(j, curve)| {
intersections_vec.extend(
curve
.all_intersections(&other, error, minimum_separation)
.iter()
.filter(|&value| (j != i + 1 || value[0] > err || (1. - value[1]) > err) && (j != num_curves - 1 || i != 0 || value[1] > err || (1. - value[0]) > err))
.flat_map(|value| [(j, value[0]), (i, value[1])]),
);
});
});
intersections_vec.sort_by(|a, b| a.partial_cmp(b).unwrap());
intersections_vec
}
/// Calculates the intersection points the subpath has with a given rectangle and returns a list of `(usize, f64)` tuples,
/// where the `usize` represents the index of the curve in the subpath, and the `f64` represents the `t`-value local to
/// that curve where the intersection occurred.
/// Expects the following:
/// - `corner1`: any corner of the axis-aligned box to intersect with
/// - `corner2`: the corner opposite to `corner1`
/// - `error`: an optional f64 value to provide an error bound
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-rectangle/solo" title="Intersection Demo"></iframe>
pub fn rectangle_intersections(&self, corner1: DVec2, corner2: DVec2, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
[
Bezier::from_linear_coordinates(corner1.x, corner1.y, corner2.x, corner1.y),
Bezier::from_linear_coordinates(corner2.x, corner1.y, corner2.x, corner2.y),
Bezier::from_linear_coordinates(corner2.x, corner2.y, corner1.x, corner2.y),
Bezier::from_linear_coordinates(corner1.x, corner2.y, corner1.x, corner1.y),
]
.iter()
.flat_map(|bezier| self.intersections(bezier, error, minimum_separation))
.collect()
}
/// Checks if any intersections exist between this subpath and the four edges of the rectangle defined by the top-left `corner1` and bottom-right `corner2`.
/// This is faster than calling [`rectangle_intersections`]`.len()` because it short-circuits as soon as an intersection is found.
pub fn rectangle_intersections_exist(&self, corner1: DVec2, corner2: DVec2) -> bool {
let rotate_by_90deg = |point| DMat2::from_angle(std::f64::consts::FRAC_PI_2) * point;
for bezier in self.iter() {
// Check that the two bounding boxes don't intersect, since we can avoid doing intersection's cubic root finding in that case
let [bezier_corner1, bezier_corner2] = bezier.bounding_box_of_anchors_and_handles();
if !(((corner1.x < bezier_corner1.x) && (bezier_corner1.x < corner2.x) || (corner1.x < bezier_corner2.x) && (bezier_corner2.x < corner2.x))
&& corner1.y < bezier_corner2.y
&& corner2.y > bezier_corner1.y
|| ((corner1.y < bezier_corner1.y) && (bezier_corner1.y < corner2.y) || (corner1.y < bezier_corner2.y) && (bezier_corner2.y < corner2.y))
&& corner1.x < bezier_corner2.x
&& corner2.x > bezier_corner1.x)
{
continue;
}
// Original rotation axis
if bezier.line_test_crossings_prerotated(corner1, DMat2::IDENTITY, bezier).any(|intersection_point| {
let (_, y) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
y >= corner1.y && y <= corner2.y
}) {
return true;
}
if bezier.line_test_crossings_prerotated(corner2, DMat2::IDENTITY, bezier).any(|intersection_point| {
let (_, y) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
y >= corner1.y && y <= corner2.y
}) {
return true;
}
// Perpendicular to original rotation axis
let rotated_bezier = bezier.apply_transformation(rotate_by_90deg);
if bezier.line_test_crossings_prerotated(corner1, DMat2::IDENTITY, rotated_bezier).any(|intersection_point| {
let (x, _) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
x >= corner1.x && x <= corner2.x
}) {
return true;
}
if bezier.line_test_crossings_prerotated(corner2, DMat2::IDENTITY, rotated_bezier).any(|intersection_point| {
let (x, _) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
x >= corner1.x && x <= corner2.x
}) {
return true;
}
}
false
}
/// Returns `true` if this subpath is completely inside the `other` subpath.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/inside-other/solo" title="Inside Other Subpath Demo"></iframe>
pub fn is_inside_subpath(&self, other: &Subpath<PointId>, error: Option<f64>, minimum_separation: Option<f64>) -> bool {
// Eliminate any possibility of one being inside the other, if either of them is empty
if self.is_empty() || other.is_empty() {
return false;
}
// Safe to unwrap because the subpath is not empty
let inner_bbox = self.bounding_box().unwrap();
let outer_bbox = other.bounding_box().unwrap();
// Eliminate this subpath if its bounding box is not completely inside the other subpath's bounding box.
// Reasoning:
// If the (min x, min y) of the inner subpath is less than or equal to the (min x, min y) of the outer subpath,
// or if the (min x, min y) of the inner subpath is greater than or equal to the (max x, max y) of the outer subpath,
// then the inner subpath is intersecting with or outside the outer subpath. The same logic applies for (max x, max y).
if !is_rectangle_inside_other(inner_bbox, outer_bbox) {
return false;
}
// Eliminate this subpath if any of its anchors are outside the other subpath.
for anchors in self.anchors() {
if !other.contains_point(anchors) {
return false;
}
}
// Eliminate this subpath if it intersects with the other subpath.
if !self.subpath_intersections(other, error, minimum_separation).is_empty() {
return false;
}
// At this point:
// (1) This subpath's bounding box is inside the other subpath's bounding box,
// (2) Its anchors are inside the other subpath, and
// (3) It is not intersecting with the other subpath.
// Hence, this subpath is completely inside the given other subpath.
true
}
/// Returns a normalized unit vector representing the tangent on the subpath based on the parametric `t`-value provided.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/tangent/solo" title="Tangent Demo"></iframe>
pub fn tangent(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().tangent(TValue::Parametric(t))
}
/// Returns a normalized unit vector representing the direction of the normal on the subpath based on the parametric `t`-value provided.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/normal/solo" title="Normal Demo"></iframe>
pub fn normal(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().normal(TValue::Parametric(t))
}
/// Returns two lists of `t`-values representing the local extrema of the `x` and `y` parametric subpaths respectively.
/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/local-extrema/solo" title="Local Extrema Demo"></iframe>
pub fn local_extrema(&self) -> [Vec<f64>; 2] {
let number_of_curves = self.len_segments() as f64;
// TODO: Consider the shared point between adjacent beziers.
self.iter().enumerate().fold([Vec::new(), Vec::new()], |mut acc, elem| {
let [x, y] = elem.1.local_extrema();
// Convert t-values of bezier curve to t-values of subpath
acc[0].extend(x.map(|t| ((elem.0 as f64) + t) / number_of_curves).collect::<Vec<f64>>());
acc[1].extend(y.map(|t| ((elem.0 as f64) + t) / number_of_curves).collect::<Vec<f64>>());
acc
})
}
/// Return the min and max corners that represent the bounding box of the subpath. Return `None` if the subpath is empty.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/bounding-box/solo" title="Bounding Box Demo"></iframe>
pub fn bounding_box(&self) -> Option<[DVec2; 2]> {
self.iter().map(|bezier| bezier.bounding_box()).reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the bounding box of the subpath, after a given affine transform.
pub fn bounding_box_with_transform(&self, transform: glam::DAffine2) -> Option<[DVec2; 2]> {
self.iter()
.map(|bezier| bezier.apply_transformation(|v| transform.transform_point2(v)).bounding_box())
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the loose bounding box of the subpath (bounding box of all handles and anchors).
pub fn loose_bounding_box(&self) -> Option<[DVec2; 2]> {
self.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle, Some(group.anchor)])
.flatten()
.map(|pos| [pos, pos])
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the loose bounding box of the subpath, after a given affine transform.
pub fn loose_bounding_box_with_transform(&self, transform: glam::DAffine2) -> Option<[DVec2; 2]> {
self.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle, Some(group.anchor)])
.flatten()
.map(|pos| transform.transform_point2(pos))
.map(|pos| [pos, pos])
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Returns list of `t`-values representing the inflection points of the subpath.
/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/inflections/solo" title="Inflections Demo"></iframe>
pub fn inflections(&self) -> Vec<f64> {
let number_of_curves = self.len_segments() as f64;
let inflection_t_values: Vec<f64> = self
.iter()
.enumerate()
.flat_map(|(index, bezier)| {
bezier
.inflections()
.into_iter()
// Convert t-values of bezier curve to t-values of subpath
.map(move |t| ((index as f64) + t) / number_of_curves)
})
.collect();
// TODO: Consider the shared point between adjacent beziers.
inflection_t_values
}
/// Does a path contain a point? Based on the non zero winding
pub fn contains_point(&self, target_point: DVec2) -> bool {
self.iter().map(|bezier| bezier.winding(target_point)).sum::<i32>() != 0
}
/// Does a path contain a point? Based on the non zero winding. Automatically adds a linear segment if the subpath is not closed.
pub fn contains_point_autoclose(&self, target_point: DVec2) -> bool {
let mut winding = self.iter().map(|bezier| bezier.winding(target_point)).sum::<i32>();
if !self.closed {
if let [Some(first), Some(last)] = [self.manipulator_groups.first(), self.manipulator_groups.last()] {
winding += Bezier::from_linear_dvec2(first.anchor, last.anchor).winding(target_point);
}
}
winding != 0
}
/// Randomly places points across the filled surface of this subpath (which is assumed to be closed).
/// The `separation_disk_diameter` determines the minimum distance between all points from one another.
/// Conceptually, this works by "throwing a dart" at the subpath's bounding box and keeping the dart only if:
/// - It's inside the shape
/// - It's not closer than `separation_disk_diameter` to any other point from a previous accepted dart throw
///
/// This repeats until accepted darts fill all possible areas between one another.
///
/// While the conceptual process described above asymptotically slows down and is never guaranteed to produce a maximal set in finite time,
/// this is implemented with an algorithm that produces a maximal set in O(n) time. The slowest part is actually checking if points are inside the subpath shape.
pub fn poisson_disk_points(&self, separation_disk_diameter: f64, rng: impl FnMut() -> f64, subpaths: &[(Self, [DVec2; 2])], subpath_index: usize) -> Vec<DVec2> {
let Some(bounding_box) = self.bounding_box() else { return Vec::new() };
let (offset_x, offset_y) = bounding_box[0].into();
let (width, height) = (bounding_box[1] - bounding_box[0]).into();
// TODO: Optimize the following code and make it more robust
let mut shape = self.clone();
shape.set_closed(true);
shape.apply_transform(DAffine2::from_translation((-offset_x, -offset_y).into()));
let point_in_shape_checker = |point: DVec2| {
// Check against all paths the point is contained in to compute the correct winding number
let mut number = 0;
for (i, (shape, bb)) in subpaths.iter().enumerate() {
let point = point + bounding_box[0];
if bb[0].x > point.x || bb[0].y > point.y || bb[1].x < point.x || bb[1].y < point.y {
continue;
}
let winding = shape.winding_order(point);
if i == subpath_index && winding == 0 {
return false;
}
number += winding;
}
number != 0
};
let square_edges_intersect_shape_checker = |corner1: DVec2, size: f64| {
let corner2 = corner1 + DVec2::splat(size);
self.rectangle_intersections_exist(corner1, corner2)
};
let mut points = crate::poisson_disk::poisson_disk_sample(width, height, separation_disk_diameter, point_in_shape_checker, square_edges_intersect_shape_checker, rng);
for point in &mut points {
point.x += offset_x;
point.y += offset_y;
}
points
}
/// Returns the manipulator point that is needed for a miter join if it is possible.
/// - `miter_limit`: Defines a limit for the ratio between the miter length and the stroke width.
///
/// Alternatively, this can be interpreted as limiting the angle that the miter can form.
/// When the limit is exceeded, no manipulator group will be returned.
/// This value should be greater than 0. If not, the default of 4 will be used.
pub fn miter_line_join(&self, other: &Subpath<PointId>, miter_limit: Option<f64>) -> Option<ManipulatorGroup<PointId>> {
let miter_limit = match miter_limit {
Some(miter_limit) if miter_limit > f64::EPSILON => miter_limit,
_ => 4.,
};
// TODO: Besides returning None using the `?` operator, is there a more appropriate way to handle a `None` result from `get_segment`?
let in_segment = self.get_segment(self.len_segments().checked_sub(1)?)?;
let out_segment = other.get_segment(0)?;
let in_tangent = in_segment.tangent(TValue::Parametric(1.));
let out_tangent = out_segment.tangent(TValue::Parametric(0.));
if in_tangent == DVec2::ZERO || out_tangent == DVec2::ZERO {
// Avoid panic from normalizing zero vectors
// TODO: Besides returning None, is there a more appropriate way to handle this?
return None;
}
let normalized_in_tangent = in_tangent.normalize();
let normalized_out_tangent = out_tangent.normalize();
// The tangents must not be parallel for the miter join
if !normalized_in_tangent.abs_diff_eq(normalized_out_tangent, MAX_ABSOLUTE_DIFFERENCE) && !normalized_in_tangent.abs_diff_eq(-normalized_out_tangent, MAX_ABSOLUTE_DIFFERENCE) {
let intersection = line_intersection(in_segment.end(), in_tangent, out_segment.start(), out_tangent);
let start_to_intersection = intersection - in_segment.end();
let intersection_to_end = out_segment.start() - intersection;
if start_to_intersection == DVec2::ZERO || intersection_to_end == DVec2::ZERO {
// Avoid panic from normalizing zero vectors
// TODO: Besides returning None, is there a more appropriate way to handle this?
return None;
}
// Draw the miter join if the intersection occurs in the correct direction with respect to the path
if start_to_intersection.normalize().abs_diff_eq(in_tangent, MAX_ABSOLUTE_DIFFERENCE)
&& intersection_to_end.normalize().abs_diff_eq(out_tangent, MAX_ABSOLUTE_DIFFERENCE)
&& miter_limit > f64::EPSILON / (start_to_intersection.angle_to(-intersection_to_end).abs() / 2.).sin()
{
return Some(ManipulatorGroup {
anchor: intersection,
in_handle: None,
out_handle: None,
id: PointId::new(),
});
}
}
// If we can't draw the miter join, default to a bevel join
None
}
/// Returns the necessary information to create a round join with the provided center.
/// The returned items correspond to:
/// - The `out_handle` for the last manipulator group of `self`
/// - The new manipulator group to be added
/// - The `in_handle` for the first manipulator group of `other`
pub fn round_line_join(&self, other: &Subpath<PointId>, center: DVec2) -> (DVec2, ManipulatorGroup<PointId>, DVec2) {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center_to_right = right - center;
let center_to_left = left - center;
let in_segment = self.len_segments().checked_sub(1).and_then(|segment| self.get_segment(segment));
let in_tangent = in_segment.map(|in_segment| in_segment.tangent(TValue::Parametric(1.)));
let mut angle = center_to_right.angle_to(center_to_left) / 2.;
let mut arc_point = center + DMat2::from_angle(angle).mul_vec2(center_to_right);
if in_tangent.map(|in_tangent| (arc_point - left).angle_to(in_tangent).abs()).unwrap_or_default() > PI / 2. {
angle = angle - PI * (if angle < 0. { -1. } else { 1. });
arc_point = center + DMat2::from_angle(angle).mul_vec2(center_to_right);
}
compute_circular_subpath_details(left, arc_point, right, center, Some(angle))
}
/// Returns the necessary information to create a round cap between the end of `self` and the beginning of `other`.
/// The returned items correspond to:
/// - The `out_handle` for the last manipulator group of `self`
/// - The new manipulator group to be added
/// - The `in_handle` for the first manipulator group of `other`
pub(crate) fn round_cap(&self, other: &Subpath<PointId>) -> (DVec2, ManipulatorGroup<PointId>, DVec2) {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center = (right + left) / 2.;
let center_to_right = right - center;
let arc_point = center + center_to_right.perp();
compute_circular_subpath_details(left, arc_point, right, center, None)
}
/// Returns the two manipulator groups that create a square cap between the end of `self` and the beginning of `other`.
pub(crate) fn square_cap(&self, other: &Subpath<PointId>) -> [ManipulatorGroup<PointId>; 2] {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center = (right + left) / 2.;
let center_to_right = right - center;
let translation = center_to_right.perp();
[ManipulatorGroup::new_anchor(left + translation), ManipulatorGroup::new_anchor(right + translation)]
}
/// Returns the curvature, a scalar value for the derivative at the point `t` along the subpath.
/// Curvature is 1 over the radius of a circle with an equivalent derivative.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/curvature/solo" title="Curvature Demo"></iframe>
pub fn curvature(&self, t: SubpathTValue) -> f64 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().curvature(TValue::Parametric(t))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Bezier;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils;
use glam::DVec2;
fn normalize_t(n: i64, t: f64) -> f64 {
t * (n as f64) % 1.
}
#[test]
fn evaluate_one_subpath_curve() {
let start = DVec2::new(20., 30.);
let end = DVec2::new(60., 45.);
let handle = DVec2::new(75., 85.);
let bezier = Bezier::from_quadratic_dvec2(start, handle, end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
],
false,
);
let t0 = 0.;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t0)), bezier.evaluate(TValue::Parametric(t0)));
let t1 = 0.25;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t1)), bezier.evaluate(TValue::Parametric(t1)));
let t2 = 0.50;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t2)), bezier.evaluate(TValue::Parametric(t2)));
let t3 = 1.;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t3)), bezier.evaluate(TValue::Parametric(t3)));
}
#[test]
fn evaluate_multiple_subpath_curves() {
let start = DVec2::new(20., 30.);
let middle = DVec2::new(70., 70.);
let end = DVec2::new(60., 45.);
let handle1 = DVec2::new(75., 85.);
let handle2 = DVec2::new(40., 30.);
let handle3 = DVec2::new(10., 10.);
let linear_bezier = Bezier::from_linear_dvec2(start, middle);
let quadratic_bezier = Bezier::from_quadratic_dvec2(middle, handle1, end);
let cubic_bezier = Bezier::from_cubic_dvec2(end, handle2, handle3, start);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: Some(handle3),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: middle,
in_handle: None,
out_handle: Some(handle1),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle2),
id: EmptyId,
},
],
false,
);
// Test open subpath
let mut n = (subpath.len() as i64) - 1;
let t0 = 0.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t0)),
linear_bezier.evaluate(TValue::Parametric(normalize_t(n, t0))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t1 = 0.25;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t1)),
linear_bezier.evaluate(TValue::Parametric(normalize_t(n, t1))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t2 = 0.50;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t2)),
quadratic_bezier.evaluate(TValue::Parametric(normalize_t(n, t2))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t3 = 0.75;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t3)),
quadratic_bezier.evaluate(TValue::Parametric(normalize_t(n, t3))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t4 = 1.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t4)),
quadratic_bezier.evaluate(TValue::Parametric(1.)),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
// Test closed subpath
subpath.closed = true;
n = subpath.len() as i64;
let t5 = 2. / 3.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t5)),
cubic_bezier.evaluate(TValue::Parametric(normalize_t(n, t5))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t6 = 1.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t6)),
cubic_bezier.evaluate(TValue::Parametric(1.)),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_one() {
// M 35 125 C 40 40 120 120 43 43 Q 175 90 145 150 Q 70 185 35 125 Z
let cubic_start = DVec2::new(35., 125.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(43., 43.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(145., 150.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[1])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[2].0,
t: subpath_intersections[2].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_two() {
// M34 107 C40 40 120 120 102 29 Q175 90 129 171 Q70 185 34 107 Z
// M150 150 L 20 20
let cubic_start = DVec2::new(34., 107.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(102., 29.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(129., 171.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_three() {
// M35 125 C40 40 120 120 44 44 Q175 90 145 150 Q70 185 35 125 Z
let cubic_start = DVec2::new(35., 125.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(44., 44.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(145., 150.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[1])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[2].0,
t: subpath_intersections[2].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
// TODO: add more intersection tests
#[test]
fn is_inside_subpath() {
let boundary_polygon = [DVec2::new(100., 100.), DVec2::new(500., 100.), DVec2::new(500., 500.), DVec2::new(100., 500.)].to_vec();
let boundary_polygon = Subpath::from_anchors_linear(boundary_polygon, true);
let curve = Bezier::from_quadratic_dvec2(DVec2::new(189., 289.), DVec2::new(9., 286.), DVec2::new(45., 410.));
let curve_intersecting = Subpath::<EmptyId>::from_bezier(&curve);
assert!(!curve_intersecting.is_inside_subpath(&boundary_polygon, None, None));
let curve = Bezier::from_quadratic_dvec2(DVec2::new(115., 37.), DVec2::new(51.4, 91.8), DVec2::new(76.5, 242.));
let curve_outside = Subpath::<EmptyId>::from_bezier(&curve);
assert!(!curve_outside.is_inside_subpath(&boundary_polygon, None, None));
let curve = Bezier::from_cubic_dvec2(DVec2::new(210.1, 133.5), DVec2::new(150.2, 436.9), DVec2::new(436., 285.), DVec2::new(247.6, 240.7));
let curve_inside = Subpath::<EmptyId>::from_bezier(&curve);
assert!(curve_inside.is_inside_subpath(&boundary_polygon, None, None));
let line = Bezier::from_linear_dvec2(DVec2::new(101., 101.5), DVec2::new(150.2, 499.));
let line_inside = Subpath::<EmptyId>::from_bezier(&line);
assert!(line_inside.is_inside_subpath(&boundary_polygon, None, None));
}
#[test]
fn round_join_counter_clockwise_rotation() {
// Test case where the round join is drawn in the counter clockwise direction between two consecutive offsets
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: DVec2::new(20., 20.),
out_handle: Some(DVec2::new(10., 90.)),
in_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(114., 159.),
out_handle: None,
in_handle: Some(DVec2::new(60., 40.)),
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(148., 155.),
out_handle: None,
in_handle: None,
id: EmptyId,
},
],
false,
);
let offset = subpath.offset(10., utils::Join::Round);
let offset_len = offset.len();
let manipulator_groups = offset.manipulator_groups();
let round_start = manipulator_groups[offset_len - 4].anchor;
let round_point = manipulator_groups[offset_len - 3].anchor;
let round_end = manipulator_groups[offset_len - 2].anchor;
let middle = (round_start + round_end) / 2.;
assert!((round_point - middle).angle_to(round_start - middle) > 0.);
assert!((round_end - middle).angle_to(round_point - middle) > 0.);
}
#[test]
fn round_join_clockwise_rotation() {
// Test case where the round join is drawn in the clockwise direction between two consecutive offsets
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: DVec2::new(20., 20.),
out_handle: Some(DVec2::new(10., 90.)),
in_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(150., 40.),
out_handle: None,
in_handle: Some(DVec2::new(60., 40.)),
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(78., 36.),
out_handle: None,
in_handle: None,
id: EmptyId,
},
],
false,
);
let offset = subpath.offset(-15., utils::Join::Round);
let offset_len = offset.len();
let manipulator_groups = offset.manipulator_groups();
let round_start = manipulator_groups[offset_len - 4].anchor;
let round_point = manipulator_groups[offset_len - 3].anchor;
let round_end = manipulator_groups[offset_len - 2].anchor;
let middle = (round_start + round_end) / 2.;
assert!((round_point - middle).angle_to(round_start - middle) < 0.);
assert!((round_end - middle).angle_to(round_point - middle) < 0.);
}
}