openfree's picture
Deploy from GitHub repository
2409829 verified
#![allow(unused)]
pub mod ast;
mod constants;
pub mod context;
pub mod executer;
pub mod parser;
pub mod value;
use ast::Unit;
use context::{EvalContext, ValueMap};
use executer::EvalError;
use parser::ParseError;
use value::Value;
pub fn evaluate(expression: &str) -> Result<(Result<Value, EvalError>, Unit), ParseError> {
let expr = ast::Node::try_parse_from_str(expression);
let context = EvalContext::default();
expr.map(|(node, unit)| (node.eval(&context), unit))
}
#[cfg(test)]
mod tests {
use super::*;
use ast::Unit;
use value::Number;
const EPSILON: f64 = 1e-10_f64;
macro_rules! test_end_to_end{
($($name:ident: $input:expr_2021 => ($expected_value:expr_2021, $expected_unit:expr_2021)),* $(,)?) => {
$(
#[test]
fn $name() {
let expected_value = $expected_value;
let expected_unit = $expected_unit;
let expr = ast::Node::try_parse_from_str($input);
let context = EvalContext::default();
let (actual_value, actual_unit) = expr.map(|(node, unit)| (node.eval(&context), unit)).unwrap();
let actual_value = actual_value.unwrap();
assert!(actual_unit == expected_unit, "Expected unit {:?} but found unit {:?}", expected_unit, actual_unit);
let expected_value = expected_value.into();
match (actual_value, expected_value) {
(Value::Number(Number::Complex(actual_c)), Value::Number(Number::Complex(expected_c))) => {
assert!(
(actual_c.re.is_infinite() && expected_c.re.is_infinite()) || (actual_c.re - expected_c.re).abs() < EPSILON,
"Expected real part {}, but got {}",
expected_c.re,
actual_c.re
);
assert!(
(actual_c.im.is_infinite() && expected_c.im.is_infinite()) || (actual_c.im - expected_c.im).abs() < EPSILON,
"Expected imaginary part {}, but got {}",
expected_c.im,
actual_c.im
);
}
(Value::Number(Number::Real(actual_f)), Value::Number(Number::Real(expected_f))) => {
if actual_f.is_infinite() || expected_f.is_infinite() {
assert!(
actual_f.is_infinite() && expected_f.is_infinite() && actual_f == expected_f,
"Expected infinite value {}, but got {}",
expected_f,
actual_f
);
} else if actual_f.is_nan() || expected_f.is_nan() {
assert!(actual_f.is_nan() && expected_f.is_nan(), "Expected NaN, but got {}", actual_f);
} else {
assert!((actual_f - expected_f).abs() < EPSILON, "Expected {}, but got {}", expected_f, actual_f);
}
}
// Handle mismatched types
_ => panic!("Mismatched types: expected {:?}, got {:?}", expected_value, actual_value),
}
}
)*
};
}
test_end_to_end! {
// Basic arithmetic and units
infix_addition: "5 + 5" => (10., Unit::BASE_UNIT),
infix_subtraction_units: "5m - 3m" => (2., Unit::LENGTH),
infix_multiplication_units: "4s * 4s" => (16., Unit { length: 0, mass: 0, time: 2 }),
infix_division_units: "8m/2s" => (4., Unit::VELOCITY),
// Order of operations
order_of_operations_negative_prefix: "-10 + 5" => (-5., Unit::BASE_UNIT),
order_of_operations_add_multiply: "5+1*1+5" => (11., Unit::BASE_UNIT),
order_of_operations_add_negative_multiply: "5+(-1)*1+5" => (9., Unit::BASE_UNIT),
order_of_operations_sqrt: "sqrt25 + 11" => (16., Unit::BASE_UNIT),
order_of_operations_sqrt_expression: "sqrt(25+11)" => (6., Unit::BASE_UNIT),
// Parentheses and nested expressions
parentheses_nested_multiply: "(5 + 3) * (2 + 6)" => (64., Unit::BASE_UNIT),
parentheses_mixed_operations: "2 * (3 + 5 * (2 + 1))" => (36., Unit::BASE_UNIT),
parentheses_divide_add_multiply: "10 / (2 + 3) + (7 * 2)" => (16., Unit::BASE_UNIT),
// Square root and nested square root
sqrt_chain_operations: "sqrt(16) + sqrt(9) * sqrt(4)" => (10., Unit::BASE_UNIT),
sqrt_nested: "sqrt(sqrt(81))" => (3., Unit::BASE_UNIT),
sqrt_divide_expression: "sqrt((25 + 11) / 9)" => (2., Unit::BASE_UNIT),
// Mixed square root and units
sqrt_multiply_units: "sqrt(16) * 2g + 5g" => (13., Unit::MASS),
sqrt_add_multiply: "sqrt(49) - 1 + 2 * 3" => (12., Unit::BASE_UNIT),
sqrt_addition_multiply: "(sqrt(36) + 2) * 2" => (16., Unit::BASE_UNIT),
// Exponentiation
exponent_single: "2^3" => (8., Unit::BASE_UNIT),
exponent_mixed_operations: "2^3 + 4^2" => (24., Unit::BASE_UNIT),
exponent_nested: "2^(3+1)" => (16., Unit::BASE_UNIT),
// Operations with negative values
negative_units_add_multiply: "-5s + (-3 * 2)s" => (-11., Unit::TIME),
negative_nested_parentheses: "-(5 + 3 * (2 - 1))" => (-8., Unit::BASE_UNIT),
negative_sqrt_addition: "-(sqrt(16) + sqrt(9))" => (-7., Unit::BASE_UNIT),
multiply_sqrt_subtract: "5 * 2 + sqrt(16) / 2 - 3" => (9., Unit::BASE_UNIT),
add_multiply_subtract_sqrt: "4 + 3 * (2 + 1) - sqrt(25)" => (8., Unit::BASE_UNIT),
add_sqrt_subtract_nested_multiply: "10 + sqrt(64) - (5 * (2 + 1))" => (3., Unit::BASE_UNIT),
// Mathematical constants
constant_pi: "pi" => (std::f64::consts::PI, Unit::BASE_UNIT),
constant_e: "e" => (std::f64::consts::E, Unit::BASE_UNIT),
constant_phi: "phi" => (1.61803398875, Unit::BASE_UNIT),
constant_tau: "tau" => (2.0 * std::f64::consts::PI, Unit::BASE_UNIT),
constant_infinity: "inf" => (f64::INFINITY, Unit::BASE_UNIT),
constant_infinity_symbol: "∞" => (f64::INFINITY, Unit::BASE_UNIT),
multiply_pi: "2 * pi" => (2.0 * std::f64::consts::PI, Unit::BASE_UNIT),
add_e_constant: "e + 1" => (std::f64::consts::E + 1.0, Unit::BASE_UNIT),
multiply_phi_constant: "phi * 2" => (1.61803398875 * 2.0, Unit::BASE_UNIT),
exponent_tau: "2^tau" => (2f64.powf(2.0 * std::f64::consts::PI), Unit::BASE_UNIT),
infinity_subtract_large_number: "inf - 1000" => (f64::INFINITY, Unit::BASE_UNIT),
// Trigonometric functions
trig_sin_pi: "sin(pi)" => (0.0, Unit::BASE_UNIT),
trig_cos_zero: "cos(0)" => (1.0, Unit::BASE_UNIT),
trig_tan_pi_div_four: "tan(pi/4)" => (1.0, Unit::BASE_UNIT),
trig_sin_tau: "sin(tau)" => (0.0, Unit::BASE_UNIT),
trig_cos_tau_div_two: "cos(tau/2)" => (-1.0, Unit::BASE_UNIT),
}
}