|
use crate::adjustments::{CellularDistanceFunction, CellularReturnType, DomainWarpType, FractalType, NoiseType}; |
|
use dyn_any::DynAny; |
|
use fastnoise_lite; |
|
use glam::{DAffine2, DVec2, Vec2}; |
|
use graphene_core::blending::AlphaBlending; |
|
use graphene_core::color::Color; |
|
use graphene_core::color::{Alpha, AlphaMut, Channel, LinearChannel, Luminance, RGBMut}; |
|
use graphene_core::context::{Ctx, ExtractFootprint}; |
|
use graphene_core::instances::Instance; |
|
use graphene_core::math::bbox::Bbox; |
|
use graphene_core::raster::image::Image; |
|
use graphene_core::raster::{Bitmap, BitmapMut}; |
|
use graphene_core::raster_types::{CPU, Raster, RasterDataTable}; |
|
use graphene_core::transform::Transform; |
|
use rand::prelude::*; |
|
use rand_chacha::ChaCha8Rng; |
|
use std::fmt::Debug; |
|
use std::hash::Hash; |
|
|
|
#[derive(Debug, DynAny)] |
|
pub enum Error { |
|
IO(std::io::Error), |
|
Image(::image::ImageError), |
|
} |
|
|
|
impl From<std::io::Error> for Error { |
|
fn from(e: std::io::Error) -> Self { |
|
Error::IO(e) |
|
} |
|
} |
|
|
|
#[node_macro::node(category("Debug: Raster"))] |
|
pub fn sample_image(ctx: impl ExtractFootprint + Clone + Send, image_frame: RasterDataTable<CPU>) -> RasterDataTable<CPU> { |
|
let mut result_table = RasterDataTable::default(); |
|
|
|
for mut image_frame_instance in image_frame.instance_iter() { |
|
let image_frame_transform = image_frame_instance.transform; |
|
let image = image_frame_instance.instance; |
|
|
|
|
|
let data = bytemuck::cast_vec(image.data.clone()); |
|
|
|
let footprint = ctx.footprint(); |
|
let viewport_bounds = footprint.viewport_bounds_in_local_space(); |
|
let image_bounds = Bbox::from_transform(image_frame_transform).to_axis_aligned_bbox(); |
|
let intersection = viewport_bounds.intersect(&image_bounds); |
|
let image_size = DAffine2::from_scale(DVec2::new(image.width as f64, image.height as f64)); |
|
let size = intersection.size(); |
|
let size_px = image_size.transform_vector2(size).as_uvec2(); |
|
|
|
|
|
if size.x <= 0. || size.y <= 0. { |
|
continue; |
|
} |
|
|
|
let image_buffer = ::image::Rgba32FImage::from_raw(image.width, image.height, data).expect("Failed to convert internal image format into image-rs data type."); |
|
|
|
let dynamic_image: ::image::DynamicImage = image_buffer.into(); |
|
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); |
|
let offset_px = image_size.transform_vector2(offset).as_uvec2(); |
|
let cropped = dynamic_image.crop_imm(offset_px.x, offset_px.y, size_px.x, size_px.y); |
|
|
|
let viewport_resolution_x = footprint.transform.transform_vector2(DVec2::X * size.x).length(); |
|
let viewport_resolution_y = footprint.transform.transform_vector2(DVec2::Y * size.y).length(); |
|
let mut new_width = size_px.x; |
|
let mut new_height = size_px.y; |
|
|
|
|
|
let resized = if new_width < image.width || new_height < image.height { |
|
new_width = viewport_resolution_x as u32; |
|
new_height = viewport_resolution_y as u32; |
|
|
|
cropped.resize_exact(new_width, new_height, ::image::imageops::Triangle) |
|
} else { |
|
cropped |
|
}; |
|
let buffer = resized.to_rgba32f(); |
|
let buffer = buffer.into_raw(); |
|
let vec = bytemuck::cast_vec(buffer); |
|
let image = Image { |
|
width: new_width, |
|
height: new_height, |
|
data: vec, |
|
base64_string: None, |
|
}; |
|
|
|
|
|
let new_transform = image_frame_transform * DAffine2::from_translation(offset) * DAffine2::from_scale(size); |
|
|
|
image_frame_instance.transform = new_transform; |
|
image_frame_instance.source_node_id = None; |
|
image_frame_instance.instance = Raster::new_cpu(image); |
|
result_table.push(image_frame_instance) |
|
} |
|
|
|
result_table |
|
} |
|
|
|
#[node_macro::node(category("Raster: Channels"))] |
|
pub fn combine_channels( |
|
_: impl Ctx, |
|
_primary: (), |
|
#[expose] red: RasterDataTable<CPU>, |
|
#[expose] green: RasterDataTable<CPU>, |
|
#[expose] blue: RasterDataTable<CPU>, |
|
#[expose] alpha: RasterDataTable<CPU>, |
|
) -> RasterDataTable<CPU> { |
|
let mut result_table = RasterDataTable::default(); |
|
|
|
let max_len = red.len().max(green.len()).max(blue.len()).max(alpha.len()); |
|
let red = red.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); |
|
let green = green.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); |
|
let blue = blue.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); |
|
let alpha = alpha.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); |
|
|
|
for (((red, green), blue), alpha) in red.zip(green).zip(blue).zip(alpha) { |
|
|
|
let red = red.filter(|i| i.instance.width > 0 && i.instance.height > 0); |
|
let green = green.filter(|i| i.instance.width > 0 && i.instance.height > 0); |
|
let blue = blue.filter(|i| i.instance.width > 0 && i.instance.height > 0); |
|
let alpha = alpha.filter(|i| i.instance.width > 0 && i.instance.height > 0); |
|
|
|
|
|
let Some((transform, alpha_blending)) = [&red, &green, &blue, &alpha].iter().find_map(|i| i.as_ref()).map(|i| (i.transform, i.alpha_blending)) else { |
|
continue; |
|
}; |
|
|
|
|
|
let channel_dimensions = [ |
|
red.as_ref().map(|r| (r.instance.width, r.instance.height)), |
|
green.as_ref().map(|g| (g.instance.width, g.instance.height)), |
|
blue.as_ref().map(|b| (b.instance.width, b.instance.height)), |
|
alpha.as_ref().map(|a| (a.instance.width, a.instance.height)), |
|
]; |
|
if channel_dimensions.iter().all(Option::is_none) |
|
|| channel_dimensions |
|
.iter() |
|
.flatten() |
|
.any(|&(x, y)| channel_dimensions.iter().flatten().any(|&(other_x, other_y)| x != other_x || y != other_y)) |
|
{ |
|
continue; |
|
} |
|
let Some(&(width, height)) = channel_dimensions.iter().flatten().next() else { continue }; |
|
|
|
|
|
let mut image = Image::new(width, height, Color::TRANSPARENT); |
|
|
|
|
|
for y in 0..image.height() { |
|
for x in 0..image.width() { |
|
let image_pixel = image.get_pixel_mut(x, y).unwrap(); |
|
|
|
if let Some(r) = red.as_ref().and_then(|r| r.instance.get_pixel(x, y)) { |
|
image_pixel.set_red(r.l().cast_linear_channel()); |
|
} else { |
|
image_pixel.set_red(Channel::from_linear(0.)); |
|
} |
|
if let Some(g) = green.as_ref().and_then(|g| g.instance.get_pixel(x, y)) { |
|
image_pixel.set_green(g.l().cast_linear_channel()); |
|
} else { |
|
image_pixel.set_green(Channel::from_linear(0.)); |
|
} |
|
if let Some(b) = blue.as_ref().and_then(|b| b.instance.get_pixel(x, y)) { |
|
image_pixel.set_blue(b.l().cast_linear_channel()); |
|
} else { |
|
image_pixel.set_blue(Channel::from_linear(0.)); |
|
} |
|
if let Some(a) = alpha.as_ref().and_then(|a| a.instance.get_pixel(x, y)) { |
|
image_pixel.set_alpha(a.l().cast_linear_channel()); |
|
} else { |
|
image_pixel.set_alpha(Channel::from_linear(1.)); |
|
} |
|
} |
|
} |
|
|
|
|
|
result_table.push(Instance { |
|
instance: Raster::new_cpu(image), |
|
transform, |
|
alpha_blending, |
|
source_node_id: None, |
|
}); |
|
} |
|
|
|
result_table |
|
} |
|
|
|
#[node_macro::node(category("Raster"))] |
|
pub fn mask( |
|
_: impl Ctx, |
|
|
|
image: RasterDataTable<CPU>, |
|
|
|
#[expose] |
|
stencil: RasterDataTable<CPU>, |
|
) -> RasterDataTable<CPU> { |
|
|
|
let Some(stencil_instance) = stencil.instance_iter().next() else { |
|
|
|
return image; |
|
}; |
|
let stencil_size = DVec2::new(stencil_instance.instance.width as f64, stencil_instance.instance.height as f64); |
|
|
|
let mut result_table = RasterDataTable::default(); |
|
|
|
for mut image_instance in image.instance_iter() { |
|
let image_size = DVec2::new(image_instance.instance.width as f64, image_instance.instance.height as f64); |
|
let mask_size = stencil_instance.transform.decompose_scale(); |
|
|
|
if mask_size == DVec2::ZERO { |
|
continue; |
|
} |
|
|
|
|
|
let bg_to_fg = image_instance.transform * DAffine2::from_scale(1. / image_size); |
|
let stencil_transform_inverse = stencil_instance.transform.inverse(); |
|
|
|
for y in 0..image_instance.instance.height { |
|
for x in 0..image_instance.instance.width { |
|
let image_point = DVec2::new(x as f64, y as f64); |
|
let mask_point = bg_to_fg.transform_point2(image_point); |
|
let local_mask_point = stencil_transform_inverse.transform_point2(mask_point); |
|
let mask_point = stencil_instance.transform.transform_point2(local_mask_point.clamp(DVec2::ZERO, DVec2::ONE)); |
|
let mask_point = (DAffine2::from_scale(stencil_size) * stencil_instance.transform.inverse()).transform_point2(mask_point); |
|
|
|
let image_pixel = image_instance.instance.data_mut().get_pixel_mut(x, y).unwrap(); |
|
let mask_pixel = stencil_instance.instance.sample(mask_point); |
|
*image_pixel = image_pixel.multiplied_alpha(mask_pixel.l().cast_linear_channel()); |
|
} |
|
} |
|
|
|
result_table.push(image_instance); |
|
} |
|
|
|
result_table |
|
} |
|
|
|
#[node_macro::node(category(""))] |
|
pub fn extend_image_to_bounds(_: impl Ctx, image: RasterDataTable<CPU>, bounds: DAffine2) -> RasterDataTable<CPU> { |
|
let mut result_table = RasterDataTable::default(); |
|
|
|
for mut image_instance in image.instance_iter() { |
|
let image_aabb = Bbox::unit().affine_transform(image_instance.transform).to_axis_aligned_bbox(); |
|
let bounds_aabb = Bbox::unit().affine_transform(bounds.transform()).to_axis_aligned_bbox(); |
|
if image_aabb.contains(bounds_aabb.start) && image_aabb.contains(bounds_aabb.end) { |
|
result_table.push(image_instance); |
|
continue; |
|
} |
|
|
|
let image_data = &image_instance.instance.data; |
|
let (image_width, image_height) = (image_instance.instance.width, image_instance.instance.height); |
|
if image_width == 0 || image_height == 0 { |
|
for image_instance in empty_image((), bounds, Color::TRANSPARENT).instance_iter() { |
|
result_table.push(image_instance); |
|
} |
|
continue; |
|
} |
|
|
|
let orig_image_scale = DVec2::new(image_width as f64, image_height as f64); |
|
let layer_to_image_space = DAffine2::from_scale(orig_image_scale) * image_instance.transform.inverse(); |
|
let bounds_in_image_space = Bbox::unit().affine_transform(layer_to_image_space * bounds).to_axis_aligned_bbox(); |
|
|
|
let new_start = bounds_in_image_space.start.floor().min(DVec2::ZERO); |
|
let new_end = bounds_in_image_space.end.ceil().max(orig_image_scale); |
|
let new_scale = new_end - new_start; |
|
|
|
|
|
let mut new_image = Image::new(new_scale.x as u32, new_scale.y as u32, Color::TRANSPARENT); |
|
let offset_in_new_image = (-new_start).as_uvec2(); |
|
for y in 0..image_height { |
|
let old_start = y * image_width; |
|
let new_start = (y + offset_in_new_image.y) * new_image.width + offset_in_new_image.x; |
|
let old_row = &image_data[old_start as usize..(old_start + image_width) as usize]; |
|
let new_row = &mut new_image.data[new_start as usize..(new_start + image_width) as usize]; |
|
new_row.copy_from_slice(old_row); |
|
} |
|
|
|
|
|
|
|
let new_texture_to_layer_space = image_instance.transform * DAffine2::from_scale(1. / orig_image_scale) * DAffine2::from_translation(new_start) * DAffine2::from_scale(new_scale); |
|
|
|
image_instance.instance = Raster::new_cpu(new_image); |
|
image_instance.transform = new_texture_to_layer_space; |
|
image_instance.source_node_id = None; |
|
result_table.push(image_instance); |
|
} |
|
|
|
result_table |
|
} |
|
|
|
#[node_macro::node(category("Debug: Raster"))] |
|
pub fn empty_image(_: impl Ctx, transform: DAffine2, color: Color) -> RasterDataTable<CPU> { |
|
let width = transform.transform_vector2(DVec2::new(1., 0.)).length() as u32; |
|
let height = transform.transform_vector2(DVec2::new(0., 1.)).length() as u32; |
|
|
|
let image = Image::new(width, height, color); |
|
|
|
let mut result_table = RasterDataTable::new(Raster::new_cpu(image)); |
|
let image_instance = result_table.get_mut(0).unwrap(); |
|
*image_instance.transform = transform; |
|
*image_instance.alpha_blending = AlphaBlending::default(); |
|
|
|
|
|
result_table |
|
} |
|
|
|
|
|
#[node_macro::node(category(""))] |
|
pub fn image_value(_: impl Ctx, _primary: (), image: RasterDataTable<CPU>) -> RasterDataTable<CPU> { |
|
image |
|
} |
|
|
|
#[node_macro::node(category("Raster: Pattern"))] |
|
#[allow(clippy::too_many_arguments)] |
|
pub fn noise_pattern( |
|
ctx: impl ExtractFootprint + Ctx, |
|
_primary: (), |
|
clip: bool, |
|
seed: u32, |
|
scale: f64, |
|
noise_type: NoiseType, |
|
domain_warp_type: DomainWarpType, |
|
domain_warp_amplitude: f64, |
|
fractal_type: FractalType, |
|
fractal_octaves: u32, |
|
fractal_lacunarity: f64, |
|
fractal_gain: f64, |
|
fractal_weighted_strength: f64, |
|
fractal_ping_pong_strength: f64, |
|
cellular_distance_function: CellularDistanceFunction, |
|
cellular_return_type: CellularReturnType, |
|
cellular_jitter: f64, |
|
) -> RasterDataTable<CPU> { |
|
let footprint = ctx.footprint(); |
|
let viewport_bounds = footprint.viewport_bounds_in_local_space(); |
|
|
|
let mut size = viewport_bounds.size(); |
|
let mut offset = viewport_bounds.start; |
|
if clip { |
|
|
|
const CLIPPING_SQUARE_SIZE: f64 = 100.; |
|
let image_bounds = Bbox::from_transform(DAffine2::from_scale(DVec2::splat(CLIPPING_SQUARE_SIZE))).to_axis_aligned_bbox(); |
|
let intersection = viewport_bounds.intersect(&image_bounds); |
|
|
|
offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); |
|
size = intersection.size(); |
|
} |
|
|
|
|
|
if size.x <= 0. || size.y <= 0. { |
|
return RasterDataTable::default(); |
|
} |
|
|
|
let footprint_scale = footprint.scale(); |
|
let width = (size.x * footprint_scale.x) as u32; |
|
let height = (size.y * footprint_scale.y) as u32; |
|
|
|
|
|
let mut image = Image::new(width, height, Color::from_luminance(0.5)); |
|
let mut noise = fastnoise_lite::FastNoiseLite::with_seed(seed as i32); |
|
noise.set_frequency(Some(1. / (scale as f32).max(f32::EPSILON))); |
|
|
|
|
|
let domain_warp_type = match domain_warp_type { |
|
DomainWarpType::None => None, |
|
DomainWarpType::OpenSimplex2 => Some(fastnoise_lite::DomainWarpType::OpenSimplex2), |
|
DomainWarpType::OpenSimplex2Reduced => Some(fastnoise_lite::DomainWarpType::OpenSimplex2Reduced), |
|
DomainWarpType::BasicGrid => Some(fastnoise_lite::DomainWarpType::BasicGrid), |
|
}; |
|
let domain_warp_active = domain_warp_type.is_some(); |
|
noise.set_domain_warp_type(domain_warp_type); |
|
noise.set_domain_warp_amp(Some(domain_warp_amplitude as f32)); |
|
|
|
|
|
let noise_type = match noise_type { |
|
NoiseType::Perlin => fastnoise_lite::NoiseType::Perlin, |
|
NoiseType::OpenSimplex2 => fastnoise_lite::NoiseType::OpenSimplex2, |
|
NoiseType::OpenSimplex2S => fastnoise_lite::NoiseType::OpenSimplex2S, |
|
NoiseType::Cellular => fastnoise_lite::NoiseType::Cellular, |
|
NoiseType::ValueCubic => fastnoise_lite::NoiseType::ValueCubic, |
|
NoiseType::Value => fastnoise_lite::NoiseType::Value, |
|
NoiseType::WhiteNoise => { |
|
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(seed as u64); |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let pixel = image.get_pixel_mut(x, y).unwrap(); |
|
let luminance = rng.random_range(0.0..1.) as f32; |
|
*pixel = Color::from_luminance(luminance); |
|
} |
|
} |
|
|
|
let mut result = RasterDataTable::default(); |
|
result.push(Instance { |
|
instance: Raster::new_cpu(image), |
|
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), |
|
..Default::default() |
|
}); |
|
|
|
return result; |
|
} |
|
}; |
|
noise.set_noise_type(Some(noise_type)); |
|
let fractal_type = match fractal_type { |
|
FractalType::None => fastnoise_lite::FractalType::None, |
|
FractalType::FBm => fastnoise_lite::FractalType::FBm, |
|
FractalType::Ridged => fastnoise_lite::FractalType::Ridged, |
|
FractalType::PingPong => fastnoise_lite::FractalType::PingPong, |
|
FractalType::DomainWarpProgressive => fastnoise_lite::FractalType::DomainWarpProgressive, |
|
FractalType::DomainWarpIndependent => fastnoise_lite::FractalType::DomainWarpIndependent, |
|
}; |
|
noise.set_fractal_type(Some(fractal_type)); |
|
noise.set_fractal_octaves(Some(fractal_octaves as i32)); |
|
noise.set_fractal_lacunarity(Some(fractal_lacunarity as f32)); |
|
noise.set_fractal_gain(Some(fractal_gain as f32)); |
|
noise.set_fractal_weighted_strength(Some(fractal_weighted_strength as f32)); |
|
noise.set_fractal_ping_pong_strength(Some(fractal_ping_pong_strength as f32)); |
|
|
|
|
|
let cellular_distance_function = match cellular_distance_function { |
|
CellularDistanceFunction::Euclidean => fastnoise_lite::CellularDistanceFunction::Euclidean, |
|
CellularDistanceFunction::EuclideanSq => fastnoise_lite::CellularDistanceFunction::EuclideanSq, |
|
CellularDistanceFunction::Manhattan => fastnoise_lite::CellularDistanceFunction::Manhattan, |
|
CellularDistanceFunction::Hybrid => fastnoise_lite::CellularDistanceFunction::Hybrid, |
|
}; |
|
let cellular_return_type = match cellular_return_type { |
|
CellularReturnType::CellValue => fastnoise_lite::CellularReturnType::CellValue, |
|
CellularReturnType::Nearest => fastnoise_lite::CellularReturnType::Distance, |
|
CellularReturnType::NextNearest => fastnoise_lite::CellularReturnType::Distance2, |
|
CellularReturnType::Average => fastnoise_lite::CellularReturnType::Distance2Add, |
|
CellularReturnType::Difference => fastnoise_lite::CellularReturnType::Distance2Sub, |
|
CellularReturnType::Product => fastnoise_lite::CellularReturnType::Distance2Mul, |
|
CellularReturnType::Division => fastnoise_lite::CellularReturnType::Distance2Div, |
|
}; |
|
noise.set_cellular_distance_function(Some(cellular_distance_function)); |
|
noise.set_cellular_return_type(Some(cellular_return_type)); |
|
noise.set_cellular_jitter(Some(cellular_jitter as f32)); |
|
|
|
let coordinate_offset = offset.as_vec2(); |
|
let scale = size.as_vec2() / Vec2::new(width as f32, height as f32); |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let pixel = image.get_pixel_mut(x, y).unwrap(); |
|
let pos = Vec2::new(x as f32, y as f32); |
|
let vec = pos * scale + coordinate_offset; |
|
|
|
let (mut x, mut y) = (vec.x, vec.y); |
|
if domain_warp_active && domain_warp_amplitude > 0. { |
|
(x, y) = noise.domain_warp_2d(x, y); |
|
} |
|
|
|
let luminance = (noise.get_noise_2d(x, y) + 1.) * 0.5; |
|
*pixel = Color::from_luminance(luminance); |
|
} |
|
} |
|
|
|
let mut result = RasterDataTable::default(); |
|
result.push(Instance { |
|
instance: Raster::new_cpu(image), |
|
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), |
|
..Default::default() |
|
}); |
|
|
|
result |
|
} |
|
|
|
#[node_macro::node(category("Raster: Pattern"))] |
|
pub fn mandelbrot(ctx: impl ExtractFootprint + Send) -> RasterDataTable<CPU> { |
|
let footprint = ctx.footprint(); |
|
let viewport_bounds = footprint.viewport_bounds_in_local_space(); |
|
|
|
let image_bounds = Bbox::from_transform(DAffine2::IDENTITY).to_axis_aligned_bbox(); |
|
let intersection = viewport_bounds.intersect(&image_bounds); |
|
let size = intersection.size(); |
|
|
|
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); |
|
|
|
|
|
if size.x <= 0. || size.y <= 0. { |
|
return RasterDataTable::default(); |
|
} |
|
|
|
let scale = footprint.scale(); |
|
let width = (size.x * scale.x) as u32; |
|
let height = (size.y * scale.y) as u32; |
|
|
|
let mut data = Vec::with_capacity(width as usize * height as usize); |
|
let max_iter = 255; |
|
|
|
let scale = 3. * size.as_vec2() / Vec2::new(width as f32, height as f32); |
|
let coordinate_offset = offset.as_vec2() * 3. - Vec2::new(2., 1.5); |
|
for y in 0..height { |
|
for x in 0..width { |
|
let pos = Vec2::new(x as f32, y as f32); |
|
let c = pos * scale + coordinate_offset; |
|
|
|
let iter = mandelbrot_impl(c, max_iter); |
|
data.push(map_color(iter, max_iter)); |
|
} |
|
} |
|
|
|
let image = Image { |
|
width, |
|
height, |
|
data, |
|
..Default::default() |
|
}; |
|
let mut result = RasterDataTable::default(); |
|
result.push(Instance { |
|
instance: Raster::new_cpu(image), |
|
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), |
|
..Default::default() |
|
}); |
|
|
|
result |
|
} |
|
|
|
#[inline(always)] |
|
fn mandelbrot_impl(c: Vec2, max_iter: usize) -> usize { |
|
let mut z = Vec2::new(0., 0.); |
|
for i in 0..max_iter { |
|
z = Vec2::new(z.x * z.x - z.y * z.y, 2. * z.x * z.y) + c; |
|
if z.length_squared() > 4. { |
|
return i; |
|
} |
|
} |
|
max_iter |
|
} |
|
|
|
fn map_color(iter: usize, max_iter: usize) -> Color { |
|
let v = iter as f32 / max_iter as f32; |
|
Color::from_rgbaf32_unchecked(v, v, v, 1.) |
|
} |
|
|