deki / app.py
orasul's picture
Update title
57ee8d3
import gradio as gr
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import base64
import time
import json
import logging
import tempfile
import uuid
import io
from PIL import Image
from openai import OpenAI
from ultralytics import YOLO
from wrapper import process_image_description
from utils.pills import preprocess_image
import cv2
import cv2.dnn_superres as dnn_superres
import easyocr
from spellchecker import SpellChecker
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')
GLOBAL_SR = None
GLOBAL_READER = None
GLOBAL_SPELL = None
YOLO_MODEL = None
def load_models():
"""
Called once to load all necessary models into memory.
"""
global GLOBAL_SR, GLOBAL_READER, GLOBAL_SPELL, YOLO_MODEL
logging.info("Loading all models...")
start_time_total = time.perf_counter()
# Super-resolution
logging.info("Loading super-resolution model...")
start_time = time.perf_counter()
sr = None
model_path = "EDSR_x4.pb"
if os.path.exists(model_path):
if hasattr(cv2, 'dnn_superres'):
try:
sr = dnn_superres.DnnSuperResImpl_create()
except AttributeError:
sr = dnn_superres.DnnSuperResImpl()
sr.readModel(model_path)
sr.setModel('edsr', 4)
GLOBAL_SR = sr
logging.info("Super-resolution model loaded.")
else:
logging.warning("cv2.dnn_superres module not available.")
else:
logging.warning(f"Super-resolution model file not found: {model_path}. Skipping SR.")
logging.info(f"Super-resolution init took {time.perf_counter()-start_time:.3f}s.")
# EasyOCR + SpellChecker
logging.info("Loading OCR + SpellChecker...")
start_time = time.perf_counter()
GLOBAL_READER = easyocr.Reader(['en'], gpu=True)
GLOBAL_SPELL = SpellChecker()
logging.info(f"OCR + SpellChecker init took {time.perf_counter()-start_time:.3f}s.")
# YOLO Model
logging.info("Loading YOLO model...")
start_time = time.perf_counter()
yolo_weights = "best.pt"
if os.path.exists(yolo_weights):
YOLO_MODEL = YOLO(yolo_weights)
logging.info("YOLO model loaded.")
else:
logging.error(f"YOLO weights file '{yolo_weights}' not found! Endpoints will fail.")
logging.info(f"YOLO init took {time.perf_counter()-start_time:.3f}s.")
logging.info(f"Total model loading time: {time.perf_counter()-start_time_total:.3f}s.")
def pil_to_base64_str(pil_image, format="PNG"):
"""Converts a PIL Image to a base64 string with a data URI header."""
buffered = io.BytesIO()
pil_image.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/{format.lower()};base64,{img_str}"
def save_base64_image(image_data: str, file_path: str):
"""Saves a base64 encoded image to a file."""
if image_data.startswith("data:image"):
_, image_data = image_data.split(",", 1)
img_bytes = base64.b64decode(image_data)
with open(file_path, "wb") as f:
f.write(img_bytes)
return img_bytes
def run_wrapper(image_path: str, output_dir: str, skip_ocr: bool = False, skip_spell: bool = False, json_mini=False) -> str:
"""Calls the main processing script and returns the result."""
process_image_description(
input_image=image_path,
weights_file="best.pt",
output_dir=output_dir,
no_captioning=True,
output_json=True,
json_mini=json_mini,
model_obj=YOLO_MODEL,
sr=GLOBAL_SR,
spell=None if skip_ocr else GLOBAL_SPELL,
reader=None if skip_ocr else GLOBAL_READER,
skip_ocr=skip_ocr,
skip_spell=skip_spell,
)
base_name = os.path.splitext(os.path.basename(image_path))[0]
result_dir = os.path.join(output_dir, "result")
json_file = os.path.join(result_dir, f"{base_name}.json")
if os.path.exists(json_file):
with open(json_file, "r", encoding="utf-8") as f:
return f.read()
else:
raise FileNotFoundError(f"Result file not generated: {json_file}")
def handle_action(openai_key, image, prompt):
if not openai_key: return "Error: OpenAI API Key is required for /action."
if image is None: return "Error: Please upload an image."
if not prompt: return "Error: Please provide a prompt."
try:
llm_client = OpenAI(api_key=openai_key)
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
original_image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, original_image_path)
image_description = run_wrapper(original_image_path, temp_dir, skip_ocr=False, skip_spell=True, json_mini=True)
if not os.path.exists(yolo_updated_image_path):
raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
with open(yolo_updated_image_path, "rb") as f:
yolo_updated_img_bytes = f.read()
_, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=2000, scale=0.5, fmt="png")
base64_image_url = f"data:image/png;base64,{new_b64}"
prompt_text = f"""You are an AI agent that controls a mobile device and sees the content of screen.
User can ask you about some information or to do some task and you need to do these tasks.
You can only respond with one of these commands (in quotes) but some variables are dynamic
and can be changed based on the context:
1. "Swipe left. From start coordinates 300, 400" (or other coordinates) (Goes right)
2. "Swipe right. From start coordinates 500, 650" (or other coordinates) (Goes left)
3. "Swipe top. From start coordinates 600, 510" (or other coordinates) (Goes bottom)
4. "Swipe bottom. From start coordinates 640, 500" (or other coordinates) (Goes top)
5. "Go home"
6. "Go back"
8. "Open com.whatsapp" (or other app)
9. "Tap coordinates 160, 820" (or other coordinates)
10. "Insert text 210, 820:Hello world" (or other coordinates and text)
11. "Screen is in a loading state. Try again" (send image again)
12. "Answer: There are no new important mails today" (or other answer)
13. "Finished" (task is finished)
14. "Can't proceed" (can't understand what to do or image has problem etc.)
The user said: "{prompt}"
I will share the screenshot of the current state of the phone (with UI elements highlighted and the corresponding
index of these UI elements) and the description (sizes, coordinates and indexes) of UI elements.
Description:
"{image_description}" """
messages = [
{"role": "user", "content": [
{"type": "text", "text": prompt_text},
# We are correctly sending the YOLO-annotated image here
{"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
]}
]
response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"Error in /action endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
def handle_analyze(image, output_style):
if image is None: return "Error: Please upload an image."
try:
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
image_path = os.path.join(temp_dir, "image_to_analyze.png")
save_base64_image(image_b64, image_path)
is_mini = (output_style == "mini JSON")
description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)
parsed_json = json.loads(description_str)
return json.dumps(parsed_json, indent=2)
except Exception as e:
logging.error(f"Error in /analyze endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
def handle_analyze_yolo(image, output_style):
if image is None: return None, "Error: Please upload an image."
try:
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, image_path)
is_mini = (output_style == "mini JSON")
description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)
parsed_json = json.loads(description_str)
description_output = json.dumps(parsed_json, indent=2)
yolo_image_result = Image.open(yolo_image_path)
return yolo_image_result, description_output
except Exception as e:
logging.error(f"Error in /analyze_and_get_yolo: {e}", exc_info=True)
return None, f"An error occurred: {e}"
def handle_generate(openai_key, image, prompt):
if not openai_key: return "Error: OpenAI API Key is required for /generate."
if image is None: return "Error: Please upload an image."
if not prompt: return "Error: Please provide a prompt."
try:
llm_client = OpenAI(api_key=openai_key)
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
original_image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, original_image_path)
image_description = run_wrapper(image_path=original_image_path, output_dir=temp_dir, json_mini=False)
if not os.path.exists(yolo_updated_image_path):
raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
with open(yolo_updated_image_path, "rb") as f:
yolo_updated_img_bytes = f.read()
_, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=1500, scale=0.5, fmt="png")
base64_image_url = f"data:image/png;base64,{new_b64}"
prompt_text = f'"Prompt: {prompt}"\nImage description:\n"{image_description}"'
messages = [
{"role": "user", "content": [
{"type": "text", "text": prompt_text},
{"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
]}
]
response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"Error in /generate endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
default_image_1 = Image.open("./res/bb_1.jpeg")
default_image_2 = Image.open("./res/mfa_1.jpeg")
def load_example_action_1(): return default_image_1, "Open and read Umico partner"
def load_example_action_2(): return default_image_2, "Sign up in the application"
def load_example_analyze_1(): return default_image_1
def load_example_analyze_2(): return default_image_2
def load_example_yolo_1(): return default_image_1
def load_example_yolo_2(): return default_image_2
def load_example_generate_1(): return default_image_1, "Generate the code for this screen for Android XML. Try to use constraint layout"
def load_example_generate_2(): return default_image_2, "Generate the code for this screen for Android XML. Try to use constraint layout"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# deki: Describe mobile UI screenshots to enable AI agentic capabilities")
gr.Markdown("Provide your API keys below. The OpenAI key is only required for the 'Action' and 'Generate' tabs.")
with gr.Row():
openai_key_input = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API Key", type="password", scale=1)
with gr.Tabs():
with gr.TabItem("Action"):
gr.Markdown("### Control a device with natural language.")
with gr.Row():
image_input_action = gr.Image(type="pil", label="Upload Screen Image")
prompt_input_action = gr.Textbox(lines=2, placeholder="e.g., 'Open whatsapp and text my friend...'", label="Prompt")
action_output = gr.Textbox(label="Response Command")
action_button = gr.Button("Run Action", variant="primary")
with gr.Row():
example_action_btn1 = gr.Button("Load Example 1")
example_action_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Analyze"):
gr.Markdown("### Get a structured JSON description of the UI elements.")
with gr.Row():
image_input_analyze = gr.Image(type="pil", label="Upload Screen Image")
with gr.Column():
output_style_analyze = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
analyze_button = gr.Button("Analyze Image", variant="primary")
analyze_output = gr.JSON(label="JSON Description")
with gr.Row():
example_analyze_btn1 = gr.Button("Load Example 1")
example_analyze_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Analyze & Get YOLO"):
gr.Markdown("### Get a JSON description and the image with detected elements.")
with gr.Row():
image_input_yolo = gr.Image(type="pil", label="Upload Screen Image")
with gr.Column():
output_style_yolo = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
yolo_button = gr.Button("Analyze and Visualize", variant="primary")
with gr.Row():
yolo_image_output = gr.Image(label="YOLO Annotated Image")
description_output_yolo = gr.JSON(label="JSON Description")
with gr.Row():
example_yolo_btn1 = gr.Button("Load Example 1")
example_yolo_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Generate"):
gr.Markdown("### Generate code or text based on a screenshot.")
with gr.Row():
image_input_generate = gr.Image(type="pil", label="Upload Screen Image")
prompt_input_generate = gr.Textbox(lines=2, placeholder="e.g., 'Generate the Android XML for this screen'", label="Prompt")
generate_output = gr.Code(label="Generated Output")
generate_button = gr.Button("Generate", variant="primary")
with gr.Row():
example_generate_btn1 = gr.Button("Load Example 1")
example_generate_btn2 = gr.Button("Load Example 2")
action_button.click(fn=handle_action, inputs=[openai_key_input, image_input_action, prompt_input_action], outputs=action_output)
analyze_button.click(fn=handle_analyze, inputs=[image_input_analyze, output_style_analyze], outputs=analyze_output)
yolo_button.click(fn=handle_analyze_yolo, inputs=[image_input_yolo, output_style_yolo], outputs=[yolo_image_output, description_output_yolo])
generate_button.click(fn=handle_generate, inputs=[openai_key_input, image_input_generate, prompt_input_generate], outputs=generate_output)
example_action_btn1.click(fn=load_example_action_1, outputs=[image_input_action, prompt_input_action])
example_action_btn2.click(fn=load_example_action_2, outputs=[image_input_action, prompt_input_action])
example_analyze_btn1.click(fn=load_example_analyze_1, outputs=image_input_analyze)
example_analyze_btn2.click(fn=load_example_analyze_2, outputs=image_input_analyze)
example_yolo_btn1.click(fn=load_example_yolo_1, outputs=image_input_yolo)
example_yolo_btn2.click(fn=load_example_yolo_2, outputs=image_input_yolo)
example_generate_btn1.click(fn=load_example_generate_1, outputs=[image_input_generate, prompt_input_generate])
example_generate_btn2.click(fn=load_example_generate_2, outputs=[image_input_generate, prompt_input_generate])
load_models()
demo.launch()