Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class UpsampleBlock(nn.Module): | |
def __init__(self, num_input_channels, num_output_channels): | |
super(UpsampleBlock, self).__init__() | |
self.pixel_shuffle = nn.PixelShuffle(2) | |
self.conv = nn.Conv2d(num_input_channels // (2 * 2), num_output_channels, 3, stride=1, padding=1) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x = self.pixel_shuffle(x) | |
x = self.conv(x) | |
x = self.relu(x) | |
return x | |
class AppearanceNetwork(nn.Module): | |
def __init__(self, num_input_channels, num_output_channels): | |
super(AppearanceNetwork, self).__init__() | |
self.conv1 = nn.Conv2d(num_input_channels, 256, 3, stride=1, padding=1) | |
self.up1 = UpsampleBlock(256, 128) | |
self.up2 = UpsampleBlock(128, 64) | |
self.up3 = UpsampleBlock(64, 32) | |
self.up4 = UpsampleBlock(32, 16) | |
self.conv2 = nn.Conv2d(16, 16, 3, stride=1, padding=1) | |
self.conv3 = nn.Conv2d(16, num_output_channels, 3, stride=1, padding=1) | |
self.relu = nn.ReLU() | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.relu(x) | |
x = self.up1(x) | |
x = self.up2(x) | |
x = self.up3(x) | |
x = self.up4(x) | |
# bilinear interpolation | |
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) | |
x = self.conv2(x) | |
x = self.relu(x) | |
x = self.conv3(x) | |
x = self.sigmoid(x) | |
return x | |
if __name__ == "__main__": | |
H, W = 1200//32, 1600//32 | |
input_channels = 3 + 64 | |
output_channels = 3 | |
input = torch.randn(1, input_channels, H, W).cuda() | |
model = AppearanceNetwork(input_channels, output_channels).cuda() | |
output = model(input) | |
print(output.shape) |