Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import torch | |
import numpy as np | |
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation | |
from torch import nn | |
import os | |
from utils.system_utils import mkdir_p | |
from plyfile import PlyData, PlyElement | |
from utils.sh_utils import RGB2SH | |
from simple_knn._C import distCUDA2 | |
from utils.graphics_utils import BasicPointCloud | |
from utils.general_utils import strip_symmetric, build_scaling_rotation | |
from scene.appearance_network import AppearanceNetwork | |
import trimesh | |
import math | |
class GaussianModel: | |
# use mip-splatting filters | |
def setup_functions(self): | |
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): | |
L = build_scaling_rotation(scaling_modifier * scaling, rotation) | |
actual_covariance = L @ L.transpose(1, 2) | |
symm = strip_symmetric(actual_covariance) | |
return symm | |
self.scaling_activation = torch.exp | |
self.scaling_inverse_activation = torch.log | |
self.covariance_activation = build_covariance_from_scaling_rotation | |
self.opacity_activation = torch.sigmoid | |
self.inverse_opacity_activation = inverse_sigmoid | |
self.rotation_activation = torch.nn.functional.normalize | |
def __init__(self, sh_degree : int): | |
self.active_sh_degree = 0 | |
self.max_sh_degree = sh_degree | |
self._xyz = torch.empty(0) | |
self._features_dc = torch.empty(0) | |
self._features_rest = torch.empty(0) | |
self._scaling = torch.empty(0) | |
self._rotation = torch.empty(0) | |
self._opacity = torch.empty(0) | |
self.max_radii2D = torch.empty(0) | |
self.xyz_gradient_accum = torch.empty(0) | |
self.denom = torch.empty(0) | |
self.optimizer = None | |
self.percent_dense = 0 | |
self.spatial_lr_scale = 0 | |
self.setup_functions() | |
# appearance network and appearance embedding | |
# this module is adopted from GOF | |
self.appearance_network = AppearanceNetwork(3+64, 3).cuda() | |
std = 1e-4 | |
self._appearance_embeddings = nn.Parameter(torch.empty(2048, 64).cuda()) | |
self._appearance_embeddings.data.normal_(0, std) | |
def capture(self): | |
return ( | |
self.active_sh_degree, | |
self._xyz, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
self.xyz_gradient_accum, | |
self.denom, | |
self.optimizer.state_dict(), | |
self.spatial_lr_scale, | |
self.appearance_network.state_dict(), | |
self._appearance_embeddings | |
) | |
def restore(self, model_args, training_args): | |
(self.active_sh_degree, | |
self._xyz, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
xyz_gradient_accum, | |
denom, | |
opt_dict, | |
self.spatial_lr_scale, | |
app_dict, | |
_appearance_embeddings) = model_args | |
self.training_setup(training_args) | |
self.xyz_gradient_accum = xyz_gradient_accum | |
self.denom = denom | |
self.optimizer.load_state_dict(opt_dict) | |
self.appearance_network.load_state_dict(app_dict) | |
self._appearance_embeddings = _appearance_embeddings | |
def get_scaling(self): | |
return self.scaling_activation(self._scaling) | |
def get_scaling_with_3D_filter(self): | |
scales = self.get_scaling | |
scales = torch.square(scales) + torch.square(self.filter_3D) | |
scales = torch.sqrt(scales) | |
return scales | |
def get_rotation(self): | |
return self.rotation_activation(self._rotation) | |
def get_xyz(self): | |
return self._xyz | |
def get_features(self): | |
features_dc = self._features_dc | |
features_rest = self._features_rest | |
return torch.cat((features_dc, features_rest), dim=1) | |
def get_opacity(self): | |
return self.opacity_activation(self._opacity) | |
def get_opacity_with_3D_filter(self): | |
opacity = self.opacity_activation(self._opacity) | |
# apply 3D filter | |
scales = self.get_scaling | |
scales_square = torch.square(scales) | |
det1 = scales_square.prod(dim=1) | |
scales_after_square = scales_square + torch.square(self.filter_3D) | |
det2 = scales_after_square.prod(dim=1) | |
coef = torch.sqrt(det1 / det2) | |
return opacity * coef[..., None] | |
def get_scaling_n_opacity_with_3D_filter(self): | |
opacity = self.opacity_activation(self._opacity) | |
scales = self.get_scaling | |
scales_square = torch.square(scales) | |
det1 = scales_square.prod(dim=1) | |
scales_after_square = scales_square + torch.square(self.filter_3D) | |
det2 = scales_after_square.prod(dim=1) | |
coef = torch.sqrt(det1 / det2) | |
scales = torch.sqrt(scales_after_square) | |
return scales, opacity * coef[..., None] | |
def get_apperance_embedding(self, idx): | |
return self._appearance_embeddings[idx] | |
def get_covariance(self, scaling_modifier = 1): | |
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) | |
def reset_3D_filter(self): | |
xyz = self.get_xyz | |
self.filter_3D = torch.zeros([xyz.shape[0], 1], device=xyz.device) | |
def compute_3D_filter(self, cameras): | |
# print("Computing 3D filter") | |
#TODO consider focal length and image width | |
xyz = self.get_xyz | |
distance = torch.ones((xyz.shape[0]), device=xyz.device) * 100000.0 | |
valid_points = torch.zeros((xyz.shape[0]), device=xyz.device, dtype=torch.bool) | |
# we should use the focal length of the highest resolution camera | |
focal_length = 0. | |
for camera in cameras: | |
# focal_x = float(camera.intrinsic[0,0]) | |
# focal_y = float(camera.intrinsic[1,1]) | |
W, H = camera.image_width, camera.image_height | |
focal_x = W / (2 * math.tan(camera.FoVx / 2.)) | |
focal_y = H / (2 * math.tan(camera.FoVy / 2.)) | |
# transform points to camera space | |
R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32) | |
T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32) | |
# R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here | |
xyz_cam = xyz @ R + T[None, :] | |
# project to screen space | |
valid_depth = xyz_cam[:, 2] > 0.2 # TODO remove hard coded value | |
x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2] | |
z = torch.clamp(z, min=0.001) | |
x = x / z * focal_x + camera.image_width / 2.0 | |
y = y / z * focal_y + camera.image_height / 2.0 | |
# in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height)) | |
# use similar tangent space filtering as in the paper | |
in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height)) | |
valid = torch.logical_and(valid_depth, in_screen) | |
# distance[valid] = torch.min(distance[valid], xyz_to_cam[valid]) | |
distance[valid] = torch.min(distance[valid], z[valid]) | |
valid_points = torch.logical_or(valid_points, valid) | |
if focal_length < focal_x: | |
focal_length = focal_x | |
distance[~valid_points] = distance[valid_points].max() | |
#TODO remove hard coded value | |
#TODO box to gaussian transform | |
filter_3D = distance / focal_length * (0.2 ** 0.5) | |
self.filter_3D = filter_3D[..., None] | |
def compute_partial_3D_filter(self, cameras): | |
# print("Computing 3D filter") | |
#TODO consider focal length and image width | |
xyz = self.get_xyz | |
point_num = xyz.shape[0] | |
current_filter = self.filter_3D.shape[0] | |
addition_xyz_num = point_num - current_filter | |
if addition_xyz_num == 0: | |
return | |
addition_xyz = xyz[current_filter:] | |
distance = torch.ones((addition_xyz_num), device=xyz.device) * 100000.0 | |
valid_points = torch.zeros((addition_xyz_num), device=xyz.device, dtype=torch.bool) | |
# we should use the focal length of the highest resolution camera | |
focal_length = 0. | |
for camera in cameras: | |
# focal_x = float(camera.intrinsic[0,0]) | |
# focal_y = float(camera.intrinsic[1,1]) | |
W, H = camera.image_width, camera.image_height | |
focal_x = W / (2 * math.tan(camera.FoVx / 2.)) | |
focal_y = H / (2 * math.tan(camera.FoVy / 2.)) | |
# transform points to camera space | |
R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32) | |
T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32) | |
# R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here | |
xyz_cam = addition_xyz @ R + T[None, :] | |
# project to screen space | |
valid_depth = xyz_cam[:, 2] > 0.2 # TODO remove hard coded value | |
x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2] | |
z = torch.clamp(z, min=0.001) | |
x = x / z * focal_x + camera.image_width / 2.0 | |
y = y / z * focal_y + camera.image_height / 2.0 | |
# in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height)) | |
# use similar tangent space filtering as in the paper | |
in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height)) | |
valid = torch.logical_and(valid_depth, in_screen) | |
# distance[valid] = torch.min(distance[valid], xyz_to_cam[valid]) | |
distance[valid] = torch.min(distance[valid], z[valid]) | |
valid_points = torch.logical_or(valid_points, valid) | |
if focal_length < focal_x: | |
focal_length = focal_x | |
distance[~valid_points] = distance[valid_points].max() | |
#TODO remove hard coded value | |
#TODO box to gaussian transform | |
filter_3D = distance / focal_length * (0.2 ** 0.5) | |
self.filter_3D = torch.cat([self.filter_3D,filter_3D[..., None]]) | |
def oneupSHdegree(self): | |
if self.active_sh_degree < self.max_sh_degree: | |
self.active_sh_degree += 1 | |
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): | |
self.spatial_lr_scale = spatial_lr_scale | |
if type(pcd) is BasicPointCloud: | |
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() | |
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) | |
else: | |
fused_point_cloud = torch.tensor(np.asarray(pcd._xyz)).float().cuda() | |
fused_color = RGB2SH(torch.tensor(np.asarray(pcd._rgb)).float().cuda()) | |
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() | |
features[:, :3, 0 ] = fused_color | |
features[:, 3:, 1:] = 0.0 | |
print("Number of points at initialisation : ", fused_point_cloud.shape[0]) | |
dist2 = torch.clamp_min(distCUDA2(fused_point_cloud.detach().clone().float().cuda()), 0.0000001) | |
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) | |
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") | |
rots[:, 0] = 1 | |
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) | |
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) | |
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._scaling = nn.Parameter(scales.requires_grad_(True)) | |
self._rotation = nn.Parameter(rots.requires_grad_(True)) | |
self._opacity = nn.Parameter(opacities.requires_grad_(True)) | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
def training_setup(self, training_args): | |
self.percent_dense = training_args.percent_dense | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.xyz_gradient_accum_abs_max = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
l = [ | |
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, | |
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, | |
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, | |
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, | |
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, | |
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}, | |
{'params': [self._appearance_embeddings], 'lr': training_args.appearance_embeddings_lr, "name": "appearance_embeddings"}, | |
{'params': self.appearance_network.parameters(), 'lr': training_args.appearance_network_lr, "name": "appearance_network"} | |
] | |
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) | |
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, | |
lr_final=training_args.position_lr_final*self.spatial_lr_scale, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.position_lr_max_steps) | |
def update_learning_rate(self, iteration): | |
''' Learning rate scheduling per step ''' | |
for param_group in self.optimizer.param_groups: | |
if param_group["name"] == "xyz": | |
lr = self.xyz_scheduler_args(iteration) | |
param_group['lr'] = lr | |
return lr | |
def construct_list_of_attributes(self, exclude_filter=False): | |
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] | |
# All channels except the 3 DC | |
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): | |
l.append('f_dc_{}'.format(i)) | |
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): | |
l.append('f_rest_{}'.format(i)) | |
l.append('opacity') | |
for i in range(self._scaling.shape[1]): | |
l.append('scale_{}'.format(i)) | |
for i in range(self._rotation.shape[1]): | |
l.append('rot_{}'.format(i)) | |
if not exclude_filter: | |
l.append('filter_3D') | |
return l | |
def save_ply(self, path): | |
mkdir_p(os.path.dirname(path)) | |
xyz = self._xyz.detach().cpu().numpy() | |
normals = np.zeros_like(xyz) | |
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
opacities = self._opacity.detach().cpu().numpy() | |
scale = self._scaling.detach().cpu().numpy() | |
rotation = self._rotation.detach().cpu().numpy() | |
filter_3D = self.filter_3D.detach().cpu().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] | |
elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation, filter_3D), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def get_tetra_points(self): | |
M = trimesh.creation.box() | |
M.vertices *= 2 | |
rots = build_rotation(self._rotation) | |
xyz = self.get_xyz | |
scale = self.get_scaling_with_3D_filter * 3. # TODO test | |
# filter points with small opacity for bicycle scene | |
# opacity = self.get_opacity_with_3D_filter | |
# mask = (opacity > 0.1).squeeze(-1) | |
# xyz = xyz[mask] | |
# scale = scale[mask] | |
# rots = rots[mask] | |
vertices = M.vertices.T | |
vertices = torch.from_numpy(vertices).float().cuda().unsqueeze(0).repeat(xyz.shape[0], 1, 1) | |
# scale vertices first | |
vertices = vertices * scale.unsqueeze(-1) | |
vertices = torch.bmm(rots, vertices).squeeze(-1) + xyz.unsqueeze(-1) | |
vertices = vertices.permute(0, 2, 1).reshape(-1, 3).contiguous() | |
# concat center points | |
vertices = torch.cat([vertices, xyz], dim=0) | |
# scale is not a good solution but use it for now | |
scale = scale.max(dim=-1, keepdim=True)[0] | |
scale_corner = scale.repeat(1, 8).reshape(-1, 1) | |
vertices_scale = torch.cat([scale_corner, scale], dim=0) | |
return vertices, vertices_scale | |
def get_truc_tetra_points(self, cameras, depth_truc): | |
xyz = self.get_xyz | |
valid_points = torch.zeros((xyz.shape[0]), device=xyz.device, dtype=torch.bool) | |
for camera in cameras: | |
# focal_x = float(camera.intrinsic[0,0]) | |
# focal_y = float(camera.intrinsic[1,1]) | |
W, H = camera.image_width, camera.image_height | |
focal_x = W / (2 * math.tan(camera.FoVx / 2.)) | |
focal_y = H / (2 * math.tan(camera.FoVy / 2.)) | |
# transform points to camera space | |
R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32) | |
T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32) | |
# R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here | |
xyz_cam = xyz @ R + T[None, :] | |
# project to screen space | |
valid_depth = (xyz_cam[:, 2] > 0.2) * (xyz_cam[:, 2] < depth_truc) # TODO remove hard coded value | |
x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2] | |
z = torch.clamp(z, min=0.001) | |
x = x / z * focal_x + camera.image_width / 2.0 | |
y = y / z * focal_y + camera.image_height / 2.0 | |
# in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height)) | |
# use similar tangent space filtering as in the paper | |
in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height)) | |
valid = torch.logical_and(valid_depth, in_screen) | |
valid_points = torch.logical_or(valid_points, valid) | |
M = trimesh.creation.box() | |
M.vertices *= 2 | |
rots = build_rotation(self._rotation) | |
xyz = self.get_xyz | |
scale = self.get_scaling_with_3D_filter * 3. # TODO test | |
xyz = xyz[valid_depth] | |
scale = scale[valid_depth] | |
rots = rots[valid_depth] | |
vertices = M.vertices.T | |
vertices = torch.from_numpy(vertices).float().cuda().unsqueeze(0).repeat(xyz.shape[0], 1, 1) | |
# scale vertices first | |
vertices = vertices * scale.unsqueeze(-1) | |
vertices = torch.bmm(rots, vertices).squeeze(-1) + xyz.unsqueeze(-1) | |
vertices = vertices.permute(0, 2, 1).reshape(-1, 3).contiguous() | |
# concat center points | |
vertices = torch.cat([vertices, xyz], dim=0) | |
# scale is not a good solution but use it for now | |
scale = scale.max(dim=-1, keepdim=True)[0] | |
scale_corner = scale.repeat(1, 8).reshape(-1, 1) | |
vertices_scale = torch.cat([scale_corner, scale], dim=0) | |
return vertices, vertices_scale | |
def reset_opacity(self): | |
# reset opacity to by considering 3D filter | |
current_opacity_with_filter = self.get_opacity_with_3D_filter | |
opacities_new = torch.min(current_opacity_with_filter, torch.ones_like(current_opacity_with_filter)*0.01) | |
# apply 3D filter | |
scales = self.get_scaling | |
scales_square = torch.square(scales) | |
det1 = scales_square.prod(dim=1) | |
scales_after_square = scales_square + torch.square(self.filter_3D) | |
det2 = scales_after_square.prod(dim=1) | |
coef = torch.sqrt(det1 / det2) | |
opacities_new = opacities_new / coef[..., None] | |
opacities_new = self.inverse_opacity_activation(opacities_new) | |
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") | |
self._opacity = optimizable_tensors["opacity"] | |
def load_ply(self, path): | |
plydata = PlyData.read(path) | |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
np.asarray(plydata.elements[0]["y"]), | |
np.asarray(plydata.elements[0]["z"])), axis=1) | |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
filter_3D = np.asarray(plydata.elements[0]["filter_3D"])[..., np.newaxis] | |
features_dc = np.zeros((xyz.shape[0], 3, 1)) | |
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] | |
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) | |
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 | |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) | |
for idx, attr_name in enumerate(extra_f_names): | |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) | |
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) | |
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) | |
scales = np.zeros((xyz.shape[0], len(scale_names))) | |
for idx, attr_name in enumerate(scale_names): | |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] | |
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) | |
rots = np.zeros((xyz.shape[0], len(rot_names))) | |
for idx, attr_name in enumerate(rot_names): | |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self.filter_3D = torch.tensor(filter_3D, dtype=torch.float, device="cuda") | |
self.active_sh_degree = self.max_sh_degree | |
def replace_tensor_to_optimizer(self, tensor, name): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
if group["name"] in ["appearance_embeddings", "appearance_network"]: | |
continue | |
if group["name"] == name: | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
stored_state["exp_avg"] = torch.zeros_like(tensor) | |
stored_state["exp_avg_sq"] = torch.zeros_like(tensor) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def _prune_optimizer(self, mask): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
if group["name"] in ["appearance_embeddings", "appearance_network"]: | |
continue | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = stored_state["exp_avg"][mask] | |
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def prune_points(self, mask): | |
valid_points_mask = ~mask | |
optimizable_tensors = self._prune_optimizer(valid_points_mask) | |
self._xyz = optimizable_tensors["xyz"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] | |
self.xyz_gradient_accum_abs = self.xyz_gradient_accum_abs[valid_points_mask] | |
self.xyz_gradient_accum_abs_max = self.xyz_gradient_accum_abs_max[valid_points_mask] | |
self.denom = self.denom[valid_points_mask] | |
self.max_radii2D = self.max_radii2D[valid_points_mask] | |
def cat_tensors_to_optimizer(self, tensors_dict): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
if group["name"] in ["appearance_embeddings", "appearance_network"]: | |
continue | |
assert len(group["params"]) == 1 | |
extension_tensor = tensors_dict[group["name"]] | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) | |
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): | |
d = {"xyz": new_xyz, | |
"f_dc": new_features_dc, | |
"f_rest": new_features_rest, | |
"opacity": new_opacities, | |
"scaling" : new_scaling, | |
"rotation" : new_rotation} | |
extension_num = new_xyz.shape[0] | |
optimizable_tensors = self.cat_tensors_to_optimizer(d) | |
self._xyz = optimizable_tensors["xyz"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.xyz_gradient_accum_abs_max = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
# self.max_radii2D = torch.cat([self.max_radii2D,torch.zeros(extension_num, device="cuda")]) | |
def densify_and_split(self, grads, grad_threshold, grads_abs, grad_abs_threshold, scene_extent, N=2): | |
n_init_points = self.get_xyz.shape[0] | |
# Extract points that satisfy the gradient condition | |
padded_grad = torch.zeros((n_init_points), device="cuda") | |
padded_grad[:grads.shape[0]] = grads.squeeze() | |
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) | |
padded_grad_abs = torch.zeros((n_init_points), device="cuda") | |
padded_grad_abs[:grads_abs.shape[0]] = grads_abs.squeeze() | |
selected_pts_mask_abs = torch.where(padded_grad_abs >= grad_abs_threshold, True, False) | |
selected_pts_mask = torch.logical_or(selected_pts_mask, selected_pts_mask_abs) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) | |
stds = self.get_scaling[selected_pts_mask].repeat(N,1) | |
means =torch.zeros((stds.size(0), 3),device="cuda") | |
samples = torch.normal(mean=means, std=stds) | |
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) | |
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) | |
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) | |
new_rotation = self._rotation[selected_pts_mask].repeat(N,1) | |
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) | |
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) | |
new_opacity = self._opacity[selected_pts_mask].repeat(N,1) | |
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation) | |
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) | |
self.prune_points(prune_filter) | |
def densify_and_clone(self, grads, grad_threshold, grads_abs, grad_abs_threshold, scene_extent): | |
# Extract points that satisfy the gradient condition | |
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) | |
selected_pts_mask_abs = torch.where(torch.norm(grads_abs, dim=-1) >= grad_abs_threshold, True, False) | |
selected_pts_mask = torch.logical_or(selected_pts_mask, selected_pts_mask_abs) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) | |
new_xyz = self._xyz[selected_pts_mask] | |
# sample a new gaussian instead of fixing position | |
stds = self.get_scaling[selected_pts_mask] | |
means =torch.zeros((stds.size(0), 3),device="cuda") | |
samples = torch.normal(mean=means, std=stds) | |
rots = build_rotation(self._rotation[selected_pts_mask]) | |
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask] | |
new_features_dc = self._features_dc[selected_pts_mask] | |
new_features_rest = self._features_rest[selected_pts_mask] | |
new_opacities = self._opacity[selected_pts_mask] | |
# new_opacities = 1-torch.sqrt(1-self.get_opacity[selected_pts_mask]*0.5) | |
new_scaling = self._scaling[selected_pts_mask] | |
new_rotation = self._rotation[selected_pts_mask] | |
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation) | |
# use the same densification strategy as GOF https://github.com/autonomousvision/gaussian-opacity-fields | |
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): | |
grads = self.xyz_gradient_accum / self.denom | |
grads[grads.isnan()] = 0.0 | |
grads_abs = self.xyz_gradient_accum_abs / self.denom | |
grads_abs[grads_abs.isnan()] = 0.0 | |
ratio = (torch.norm(grads, dim=-1) >= max_grad).float().mean() | |
Q = torch.quantile(grads_abs.reshape(-1), 1 - ratio) | |
before = self._xyz.shape[0] | |
self.densify_and_clone(grads, max_grad, grads_abs, Q, extent) | |
clone = self._xyz.shape[0] | |
self.densify_and_split(grads, max_grad, grads_abs, Q, extent) | |
split = self._xyz.shape[0] | |
prune_mask = (self.get_opacity < min_opacity).squeeze() | |
if max_screen_size: | |
big_points_vs = self.max_radii2D > max_screen_size | |
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent | |
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) | |
self.prune_points(prune_mask) | |
prune = self._xyz.shape[0] | |
torch.cuda.empty_cache() | |
return clone - before, split - clone, split - prune | |
def add_densification_stats(self, viewspace_point_tensor, update_filter): | |
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) | |
self.xyz_gradient_accum_abs[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,2:], dim=-1, keepdim=True) | |
self.xyz_gradient_accum_abs_max[update_filter] = torch.max(self.xyz_gradient_accum_abs_max[update_filter], torch.norm(viewspace_point_tensor.grad[update_filter,2:], dim=-1, keepdim=True)) | |
self.denom[update_filter] += 1 | |