Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import os | |
import torch | |
from random import randint | |
from utils.loss_utils import l1_loss, ssim | |
from gaussian_renderer import render, network_gui | |
import sys | |
from scene import Scene, GaussianModel | |
from utils.general_utils import safe_state | |
import uuid | |
from tqdm import tqdm | |
from utils.image_utils import psnr | |
from utils.graphics_utils import point_double_to_normal, depth_double_to_normal | |
from argparse import ArgumentParser, Namespace | |
from arguments import ModelParams, PipelineParams, OptimizationParams | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
TENSORBOARD_FOUND = True | |
except ImportError: | |
TENSORBOARD_FOUND = False | |
from scene.cameras import Camera | |
import matplotlib.pyplot as plt | |
from utils.vis_utils import apply_depth_colormap | |
# function L1_loss_appearance is fork from GOF https://github.com/autonomousvision/gaussian-opacity-fields/blob/main/train.py | |
def L1_loss_appearance(image, gt_image, gaussians, view_idx, return_transformed_image=False): | |
appearance_embedding = gaussians.get_apperance_embedding(view_idx) | |
# center crop the image | |
origH, origW = image.shape[1:] | |
H = origH // 32 * 32 | |
W = origW // 32 * 32 | |
left = origW // 2 - W // 2 | |
top = origH // 2 - H // 2 | |
crop_image = image[:, top:top+H, left:left+W] | |
crop_gt_image = gt_image[:, top:top+H, left:left+W] | |
# down sample the image | |
crop_image_down = torch.nn.functional.interpolate(crop_image[None], size=(H//32, W//32), mode="bilinear", align_corners=True)[0] | |
crop_image_down = torch.cat([crop_image_down, appearance_embedding[None].repeat(H//32, W//32, 1).permute(2, 0, 1)], dim=0)[None] | |
mapping_image = gaussians.appearance_network(crop_image_down) | |
transformed_image = mapping_image * crop_image | |
if not return_transformed_image: | |
return l1_loss(transformed_image, crop_gt_image) | |
else: | |
transformed_image = torch.nn.functional.interpolate(transformed_image, size=(origH, origW), mode="bilinear", align_corners=True)[0] | |
return transformed_image | |
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from): | |
first_iter = 0 | |
tb_writer = prepare_output_and_logger(dataset) | |
gaussians = GaussianModel(dataset.sh_degree) | |
scene = Scene(dataset, gaussians) | |
gaussians.training_setup(opt) | |
if checkpoint: | |
(model_params, first_iter) = torch.load(checkpoint) | |
gaussians.restore(model_params, opt) | |
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] | |
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") | |
kernel_size = dataset.kernel_size | |
iter_start = torch.cuda.Event(enable_timing = True) | |
iter_end = torch.cuda.Event(enable_timing = True) | |
trainCameras = scene.getTrainCameras().copy() | |
if dataset.disable_filter3D: | |
gaussians.reset_3D_filter() | |
else: | |
gaussians.compute_3D_filter(cameras=trainCameras) | |
viewpoint_stack = None | |
ema_loss_for_log, ema_depth_loss_for_log, ema_mask_loss_for_log, ema_normal_loss_for_log = 0.0, 0.0, 0.0, 0.0 | |
require_depth = not dataset.use_coord_map | |
require_coord = dataset.use_coord_map | |
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress") | |
first_iter += 1 | |
for iteration in range(first_iter, opt.iterations + 1): | |
if network_gui.conn == None: | |
network_gui.try_connect() | |
while network_gui.conn != None: | |
try: | |
net_image_bytes = None | |
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive() | |
if custom_cam != None: | |
net_image = render(custom_cam, gaussians, pipe, background, kernel_size, scaling_modifer)["render"] | |
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy()) | |
network_gui.send(net_image_bytes, dataset.source_path) | |
if do_training and ((iteration < int(opt.iterations)) or not keep_alive): | |
break | |
except Exception as e: | |
network_gui.conn = None | |
iter_start.record() | |
gaussians.update_learning_rate(iteration) | |
# Every 1000 its we increase the levels of SH up to a maximum degree | |
if iteration % 1000 == 0: | |
gaussians.oneupSHdegree() | |
# Pick a random Camera | |
if not viewpoint_stack: | |
viewpoint_stack = scene.getTrainCameras().copy() | |
viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) | |
# Render | |
if (iteration - 1) == debug_from: | |
pipe.debug = True | |
reg_kick_on = iteration >= opt.regularization_from_iter | |
render_pkg = render(viewpoint_cam, gaussians, pipe, background, kernel_size, require_coord = require_coord and reg_kick_on, require_depth = require_depth and reg_kick_on) | |
rendered_image: torch.Tensor | |
rendered_image, viewspace_point_tensor, visibility_filter, radii = ( | |
render_pkg["render"], | |
render_pkg["viewspace_points"], | |
render_pkg["visibility_filter"], | |
render_pkg["radii"]) | |
gt_image = viewpoint_cam.original_image.cuda() | |
if dataset.use_decoupled_appearance: | |
Ll1_render = L1_loss_appearance(rendered_image, gt_image, gaussians, viewpoint_cam.uid) | |
else: | |
Ll1_render = l1_loss(rendered_image, gt_image) | |
if reg_kick_on: | |
lambda_depth_normal = opt.lambda_depth_normal | |
if require_depth: | |
rendered_expected_depth: torch.Tensor = render_pkg["expected_depth"] | |
rendered_median_depth: torch.Tensor = render_pkg["median_depth"] | |
rendered_normal: torch.Tensor = render_pkg["normal"] | |
depth_middepth_normal = depth_double_to_normal(viewpoint_cam, rendered_expected_depth, rendered_median_depth) | |
else: | |
rendered_expected_coord: torch.Tensor = render_pkg["expected_coord"] | |
rendered_median_coord: torch.Tensor = render_pkg["median_coord"] | |
rendered_normal: torch.Tensor = render_pkg["normal"] | |
depth_middepth_normal = point_double_to_normal(viewpoint_cam, rendered_expected_coord, rendered_median_coord) | |
depth_ratio = 0.6 | |
normal_error_map = (1 - (rendered_normal.unsqueeze(0) * depth_middepth_normal).sum(dim=1)) | |
depth_normal_loss = (1-depth_ratio) * normal_error_map[0].mean() + depth_ratio * normal_error_map[1].mean() | |
else: | |
lambda_depth_normal = 0 | |
depth_normal_loss = torch.tensor([0],dtype=torch.float32,device="cuda") | |
rgb_loss = (1.0 - opt.lambda_dssim) * Ll1_render + opt.lambda_dssim * (1.0 - ssim(rendered_image, gt_image.unsqueeze(0))) | |
loss = rgb_loss + depth_normal_loss * lambda_depth_normal | |
loss.backward() | |
iter_end.record() | |
with torch.no_grad(): | |
# Progress bar | |
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log | |
ema_normal_loss_for_log = 0.4 * depth_normal_loss.item() + 0.6 * ema_normal_loss_for_log | |
if iteration % 10 == 0: | |
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{4}f}", "loss_normal": f"{ema_normal_loss_for_log:.{4}f}"}) | |
progress_bar.update(10) | |
if iteration == opt.iterations: | |
progress_bar.close() | |
# Log and save | |
training_report(tb_writer, iteration, Ll1_render, loss, depth_normal_loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background, kernel_size)) | |
if (iteration in saving_iterations): | |
print("\n[ITER {}] Saving Gaussians".format(iteration)) | |
scene.save(iteration) | |
# Densification | |
if iteration < opt.densify_until_iter: | |
# Keep track of max radii in image-space for pruning | |
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter]) | |
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) | |
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0: | |
size_threshold = 20 if iteration > opt.opacity_reset_interval else None | |
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.05, scene.cameras_extent, size_threshold) | |
if dataset.disable_filter3D: | |
gaussians.reset_3D_filter() | |
else: | |
gaussians.compute_3D_filter(cameras=trainCameras) | |
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter): | |
gaussians.reset_opacity() | |
if iteration % 100 == 0 and iteration > opt.densify_until_iter and not dataset.disable_filter3D: | |
if iteration < opt.iterations - 100: | |
# don't update in the end of training | |
gaussians.compute_3D_filter(cameras=trainCameras) | |
# Optimizer step | |
if iteration < opt.iterations: | |
gaussians.optimizer.step() | |
gaussians.optimizer.zero_grad(set_to_none = True) | |
if (iteration in checkpoint_iterations): | |
print("\n[ITER {}] Saving Checkpoint".format(iteration)) | |
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth") | |
def prepare_output_and_logger(args): | |
if not args.model_path: | |
if os.getenv('OAR_JOB_ID'): | |
unique_str=os.getenv('OAR_JOB_ID') | |
else: | |
unique_str = str(uuid.uuid4()) | |
args.model_path = os.path.join("./output/", unique_str[0:10]) | |
# Set up output folder | |
print("Output folder: {}".format(args.model_path)) | |
os.makedirs(args.model_path, exist_ok = True) | |
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f: | |
cfg_log_f.write(str(Namespace(**vars(args)))) | |
# Create Tensorboard writer | |
tb_writer = None | |
if TENSORBOARD_FOUND: | |
tb_writer = SummaryWriter(args.model_path) | |
else: | |
print("Tensorboard not available: not logging progress") | |
return tb_writer | |
def training_report(tb_writer, iteration, Ll1, loss, normal_loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs): | |
if tb_writer: | |
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration) | |
tb_writer.add_scalar('train_loss_patches/normal_loss', normal_loss.item(), iteration) | |
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration) | |
tb_writer.add_scalar('iter_time', elapsed, iteration) | |
# Report test and samples of training set | |
if iteration in testing_iterations: | |
torch.cuda.empty_cache() | |
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()}, | |
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]}) | |
for config in validation_configs: | |
if config['cameras'] and len(config['cameras']) > 0: | |
l1_test = 0.0 | |
psnr_test = 0.0 | |
for idx, viewpoint in enumerate(config['cameras']): | |
render_result = renderFunc(viewpoint, scene.gaussians, *renderArgs) | |
image = torch.clamp(render_result["render"], 0.0, 1.0) | |
gt_image = torch.clamp(viewpoint.original_image.cuda(), 0.0, 1.0) | |
if tb_writer and (idx < 5): | |
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration) | |
if iteration == testing_iterations[0]: | |
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration) | |
l1_test += l1_loss(image, gt_image).mean().double() | |
psnr_test += psnr(image, gt_image).mean().double() | |
psnr_test /= len(config['cameras']) | |
l1_test /= len(config['cameras']) | |
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)) | |
if config["name"] == "test": | |
with open(scene.model_path + "/chkpnt" + str(iteration) + ".txt", "w") as file_object: | |
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test), file=file_object) | |
if tb_writer: | |
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration) | |
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration) | |
if tb_writer: | |
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration) | |
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration) | |
torch.cuda.empty_cache() | |
if __name__ == "__main__": | |
# Set up command line argument parser | |
parser = ArgumentParser(description="Training script parameters") | |
lp = ModelParams(parser) | |
op = OptimizationParams(parser) | |
pp = PipelineParams(parser) | |
parser.add_argument('--ip', type=str, default="127.0.0.1") | |
parser.add_argument('--port', type=int, default=6009) | |
parser.add_argument('--debug_from', type=int, default=-1) | |
parser.add_argument('--detect_anomaly', action='store_true', default=False) | |
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000]) | |
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000]) | |
parser.add_argument("--quiet", action="store_true") | |
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[15000]) | |
parser.add_argument("--start_checkpoint", type=str, default = None) | |
args = parser.parse_args(sys.argv[1:]) | |
args.save_iterations.append(args.iterations) | |
print("Optimizing " + args.model_path) | |
# Initialize system state (RNG) | |
safe_state(args.quiet) | |
# Start GUI server, configure and run training | |
# network_gui.init(args.ip, args.port) | |
# torch.autograd.set_detect_anomaly(args.detect_anomaly) | |
training(dataset=lp.extract(args), | |
opt=op.extract(args), | |
pipe=pp.extract(args), | |
testing_iterations=args.test_iterations, | |
saving_iterations=args.save_iterations, | |
checkpoint_iterations=args.checkpoint_iterations, | |
checkpoint=args.start_checkpoint, | |
debug_from=args.debug_from) | |
# All done | |
print("\nTraining complete.") | |