paulpanwang's picture
Upload folder using huggingface_hub
476e0f0 verified
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from utils.graphics_utils import point_double_to_normal, depth_double_to_normal
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from scene.cameras import Camera
import matplotlib.pyplot as plt
from utils.vis_utils import apply_depth_colormap
# function L1_loss_appearance is fork from GOF https://github.com/autonomousvision/gaussian-opacity-fields/blob/main/train.py
def L1_loss_appearance(image, gt_image, gaussians, view_idx, return_transformed_image=False):
appearance_embedding = gaussians.get_apperance_embedding(view_idx)
# center crop the image
origH, origW = image.shape[1:]
H = origH // 32 * 32
W = origW // 32 * 32
left = origW // 2 - W // 2
top = origH // 2 - H // 2
crop_image = image[:, top:top+H, left:left+W]
crop_gt_image = gt_image[:, top:top+H, left:left+W]
# down sample the image
crop_image_down = torch.nn.functional.interpolate(crop_image[None], size=(H//32, W//32), mode="bilinear", align_corners=True)[0]
crop_image_down = torch.cat([crop_image_down, appearance_embedding[None].repeat(H//32, W//32, 1).permute(2, 0, 1)], dim=0)[None]
mapping_image = gaussians.appearance_network(crop_image_down)
transformed_image = mapping_image * crop_image
if not return_transformed_image:
return l1_loss(transformed_image, crop_gt_image)
else:
transformed_image = torch.nn.functional.interpolate(transformed_image, size=(origH, origW), mode="bilinear", align_corners=True)[0]
return transformed_image
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
kernel_size = dataset.kernel_size
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
trainCameras = scene.getTrainCameras().copy()
if dataset.disable_filter3D:
gaussians.reset_3D_filter()
else:
gaussians.compute_3D_filter(cameras=trainCameras)
viewpoint_stack = None
ema_loss_for_log, ema_depth_loss_for_log, ema_mask_loss_for_log, ema_normal_loss_for_log = 0.0, 0.0, 0.0, 0.0
require_depth = not dataset.use_coord_map
require_coord = dataset.use_coord_map
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, kernel_size, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
reg_kick_on = iteration >= opt.regularization_from_iter
render_pkg = render(viewpoint_cam, gaussians, pipe, background, kernel_size, require_coord = require_coord and reg_kick_on, require_depth = require_depth and reg_kick_on)
rendered_image: torch.Tensor
rendered_image, viewspace_point_tensor, visibility_filter, radii = (
render_pkg["render"],
render_pkg["viewspace_points"],
render_pkg["visibility_filter"],
render_pkg["radii"])
gt_image = viewpoint_cam.original_image.cuda()
if dataset.use_decoupled_appearance:
Ll1_render = L1_loss_appearance(rendered_image, gt_image, gaussians, viewpoint_cam.uid)
else:
Ll1_render = l1_loss(rendered_image, gt_image)
if reg_kick_on:
lambda_depth_normal = opt.lambda_depth_normal
if require_depth:
rendered_expected_depth: torch.Tensor = render_pkg["expected_depth"]
rendered_median_depth: torch.Tensor = render_pkg["median_depth"]
rendered_normal: torch.Tensor = render_pkg["normal"]
depth_middepth_normal = depth_double_to_normal(viewpoint_cam, rendered_expected_depth, rendered_median_depth)
else:
rendered_expected_coord: torch.Tensor = render_pkg["expected_coord"]
rendered_median_coord: torch.Tensor = render_pkg["median_coord"]
rendered_normal: torch.Tensor = render_pkg["normal"]
depth_middepth_normal = point_double_to_normal(viewpoint_cam, rendered_expected_coord, rendered_median_coord)
depth_ratio = 0.6
normal_error_map = (1 - (rendered_normal.unsqueeze(0) * depth_middepth_normal).sum(dim=1))
depth_normal_loss = (1-depth_ratio) * normal_error_map[0].mean() + depth_ratio * normal_error_map[1].mean()
else:
lambda_depth_normal = 0
depth_normal_loss = torch.tensor([0],dtype=torch.float32,device="cuda")
rgb_loss = (1.0 - opt.lambda_dssim) * Ll1_render + opt.lambda_dssim * (1.0 - ssim(rendered_image, gt_image.unsqueeze(0)))
loss = rgb_loss + depth_normal_loss * lambda_depth_normal
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_normal_loss_for_log = 0.4 * depth_normal_loss.item() + 0.6 * ema_normal_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{4}f}", "loss_normal": f"{ema_normal_loss_for_log:.{4}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1_render, loss, depth_normal_loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background, kernel_size))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.05, scene.cameras_extent, size_threshold)
if dataset.disable_filter3D:
gaussians.reset_3D_filter()
else:
gaussians.compute_3D_filter(cameras=trainCameras)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration % 100 == 0 and iteration > opt.densify_until_iter and not dataset.disable_filter3D:
if iteration < opt.iterations - 100:
# don't update in the end of training
gaussians.compute_3D_filter(cameras=trainCameras)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, normal_loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/normal_loss', normal_loss.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
render_result = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(render_result["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.cuda(), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if config["name"] == "test":
with open(scene.model_path + "/chkpnt" + str(iteration) + ".txt", "w") as file_object:
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test), file=file_object)
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[15000])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
# torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(dataset=lp.extract(args),
opt=op.extract(args),
pipe=pp.extract(args),
testing_iterations=args.test_iterations,
saving_iterations=args.save_iterations,
checkpoint_iterations=args.checkpoint_iterations,
checkpoint=args.start_checkpoint,
debug_from=args.debug_from)
# All done
print("\nTraining complete.")