Diffsplat / extensions /RaDe-GS /utils /graphics_utils.py
paulpanwang's picture
Upload folder using huggingface_hub
476e0f0 verified
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import math
import numpy as np
from typing import NamedTuple
import cv2
import os
class BasicPointCloud(NamedTuple):
points : np.array
colors : np.array
normals : np.array
def geom_transform_points(points, transf_matrix):
P, _ = points.shape
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
points_hom = torch.cat([points, ones], dim=1)
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
denom = points_out[..., 3:] + 0.0000001
return (points_out[..., :3] / denom).squeeze(dim=0)
def getWorld2View(R, t):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return np.float32(Rt)
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
""" get world 2 camera matrix
Args:
R (_type_): c2w rotation
t (_type_): w2c camera center
translate (_type_, optional): _description_. Defaults to np.array([.0, .0, .0]).
scale (float, optional): _description_. Defaults to 1.0.
Returns:
_type_: _description_
"""
# compose w2c matrix
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
# invert to get c2w
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
# get the final w2c matrix
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def focal2fov(focal, pixels):
return 2*math.atan(pixels/(2*focal))
# the following functions depths_double_to_points and depth_double_to_normal are adopted from https://github.com/hugoycj/2dgs-gaustudio/blob/main/utils/graphics_utils.py
def depths_double_to_points(view, depthmap1, depthmap2):
W, H = view.image_width, view.image_height
fx = W / (2 * math.tan(view.FoVx / 2.))
fy = H / (2 * math.tan(view.FoVy / 2.))
intrins_inv = torch.tensor(
[[1/fx, 0.,-W/(2 * fx)],
[0., 1/fy, -H/(2 * fy),],
[0., 0., 1.0]]
).float().cuda()
grid_x, grid_y = torch.meshgrid(torch.arange(W)+0.5, torch.arange(H)+0.5, indexing='xy')
points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=0).reshape(3, -1).float().cuda()
rays_d = intrins_inv @ points
points1 = depthmap1.reshape(1,-1) * rays_d
points2 = depthmap2.reshape(1,-1) * rays_d
return points1.reshape(3,H,W), points2.reshape(3,H,W)
def point_double_to_normal(view, points1, points2):
points = torch.stack([points1, points2],dim=0)
output = torch.zeros_like(points)
dx = points[...,2:, 1:-1] - points[...,:-2, 1:-1]
dy = points[...,1:-1, 2:] - points[...,1:-1, :-2]
normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=1), dim=1)
output[...,1:-1, 1:-1] = normal_map
return output
def depth_double_to_normal(view, depth1, depth2):
points1, points2 = depths_double_to_points(view, depth1, depth2)
return point_double_to_normal(view, points1, points2)
def bilinear_sampler(img, coords, mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = torch.nn.functional.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
# project the reference point cloud into the source view, then project back
#extrinsics here refers c2w
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src, thre1=0.5, thre2=0.01):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref,
depth_src, intrinsics_src, extrinsics_src)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < thre1, relative_depth_diff < thre2)
# mask = dist < 0.2
depth_reprojected[~mask] = 0
return mask, depth_reprojected, x2d_src, y2d_src, relative_depth_diff