Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
from torch import Tensor | |
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution | |
from lpips import LPIPS | |
from src.models.gsrecon import GSRecon | |
from skimage.metrics import structural_similarity as calculate_ssim | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as tF | |
from einops import rearrange | |
from diffusers import AutoencoderKL, AutoencoderTiny | |
from diffusers.models.autoencoders.autoencoder_kl import Decoder | |
from diffusers.models.autoencoders.autoencoder_tiny import DecoderTiny | |
from src.options import Options | |
TAE_DICT = { | |
"stable-diffusion-v1-5/stable-diffusion-v1-5": "madebyollin/taesd", | |
"stabilityai/stable-diffusion-2-1": "madebyollin/taesd", | |
"PixArt-alpha/PixArt-XL-2-512x512": "madebyollin/taesd", | |
"stabilityai/stable-diffusion-xl-base-1.0": "madebyollin/taesdxl", | |
"madebyollin/sdxl-vae-fp16-fix": "madebyollin/taesdxl", | |
"PixArt-alpha/PixArt-Sigma-XL-2-512-MS": "madebyollin/taesdxl", | |
"stabilityai/stable-diffusion-3-medium-diffusers": "madebyollin/taesd3", | |
"stabilityai/stable-diffusion-3.5-medium": "madebyollin/taesd3", | |
"stabilityai/stable-diffusion-3.5-large": "madebyollin/taesd3", | |
"black-forest-labs/FLUX.1-dev": "madebyollin/taef1", | |
} | |
class GSAutoencoderKL(nn.Module): | |
def __init__(self, opt: Options): | |
super().__init__() | |
self.opt = opt | |
AutoencoderKL_from = AutoencoderKL.from_config if opt.vae_from_scratch else AutoencoderKL.from_pretrained | |
AutoencoderTiny_from = AutoencoderTiny.from_config if opt.vae_from_scratch else AutoencoderTiny.from_pretrained | |
if not opt.use_tinyae: | |
if "fp16" not in opt.pretrained_model_name_or_path: | |
if "Sigma" in opt.pretrained_model_name_or_path: # PixArt-Sigma | |
self.vae = AutoencoderKL_from("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae") | |
else: | |
self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path, subfolder="vae") | |
else: # fixed fp16 VAE for SDXL | |
self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path) | |
self.vae.enable_slicing() # to save memory | |
else: | |
self.vae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path]) | |
# Encode input Conv | |
new_conv_in = nn.Conv2d( | |
12, # number of GS properties | |
self.vae.config.block_out_channels[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
if not opt.use_tinyae: | |
init_conv_in_weight = torch.cat([self.vae.encoder.conv_in.weight.data]*4, dim=1) | |
else: | |
init_conv_in_weight = torch.cat([self.vae.encoder.layers[0].weight.data]*4, dim=1) | |
# init_conv_in_weight /= 4 # rescale input conv weight parameters | |
new_conv_in.weight.data.copy_(init_conv_in_weight) | |
if not opt.use_tinyae: | |
new_conv_in.bias.data.copy_(self.vae.encoder.conv_in.bias.data) | |
self.vae.encoder.conv_in = new_conv_in | |
else: | |
new_conv_in.bias.data.copy_(self.vae.encoder.layers[0].bias.data) | |
self.vae.encoder.layers[0] = new_conv_in | |
# Decoder output Conv | |
new_conv_out = nn.Conv2d( | |
self.vae.config.block_out_channels[0], | |
12, # number of GS properties | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
if not opt.use_tinyae: | |
init_conv_out_weight = torch.cat([self.vae.decoder.conv_out.weight.data]*4, dim=0) | |
else: | |
init_conv_out_weight = torch.cat([self.vae.decoder.layers[-1].weight.data]*4, dim=0) | |
new_conv_out.weight.data.copy_(init_conv_out_weight) | |
if not opt.use_tinyae: | |
init_conv_out_bias = torch.cat([self.vae.decoder.conv_out.bias.data]*4, dim=0) | |
else: | |
init_conv_out_bias = torch.cat([self.vae.decoder.layers[-1].bias.data]*4, dim=0) | |
new_conv_out.bias.data.copy_(init_conv_out_bias) | |
if not opt.use_tinyae: | |
self.vae.decoder.conv_out = new_conv_out | |
else: | |
self.vae.decoder.layers[-1] = new_conv_out | |
if opt.freeze_encoder: | |
self.vae.encoder.requires_grad_(False) | |
self.vae.quant_conv.requires_grad_(False) | |
self.scaling_factor = opt.scaling_factor if opt.scaling_factor is not None else self.vae.config.scaling_factor | |
self.scaling_factor = self.scaling_factor if self.scaling_factor is not None else 1. | |
self.shift_factor = opt.shift_factor if opt.shift_factor is not None else self.vae.config.shift_factor | |
self.shift_factor = self.shift_factor if self.shift_factor is not None else 0. | |
# TinyAE | |
tae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path]) | |
# Tiny decoder output Conv | |
new_conv_out = nn.Conv2d( | |
tae.config.block_out_channels[0], # the same as `self.vae.config.block_out_channels[0]` | |
12, # number of GS properties | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
init_conv_out_weight = torch.cat([tae.decoder.layers[-1].weight.data]*4, dim=0) | |
new_conv_out.weight.data.copy_(init_conv_out_weight) | |
init_conv_out_bias = torch.cat([tae.decoder.layers[-1].bias.data]*4, dim=0) | |
new_conv_out.bias.data.copy_(init_conv_out_bias) | |
tae.decoder.layers[-1] = new_conv_out | |
self.tiny_decoder = tae.decoder | |
if opt.use_tiny_decoder: | |
assert not opt.use_tinyae # so 2 decoders in this model | |
def forward(self, *args, func_name="compute_loss", **kwargs): | |
# To support different forward functions for models wrapped by `accelerate` | |
return getattr(self, func_name)(*args, **kwargs) | |
def compute_loss(self, | |
data: Optional[Dict[str, Tensor]], | |
lpips_loss: LPIPS, | |
gsrecon: GSRecon, | |
step: int, | |
latents: Optional[Tensor] = None, | |
kl: Optional[float] = None, | |
gs: Optional[Tensor] = None, | |
use_tiny_decoder: bool = False, | |
dtype: torch.dtype = torch.float32, | |
): | |
outputs = {} | |
color_name = "albedo" if self.opt.input_albedo else "image" | |
images = data[color_name].to(dtype) # (B, V, 3, H, W) | |
masks = data["mask"].to(dtype) # (B, V, 1, H, W) | |
C2W = data["C2W"].to(dtype) # (B, V, 4, 4) | |
fxfycxcy = data["fxfycxcy"].to(dtype) # (B, V, 4) | |
# Input views | |
V_in = self.opt.num_input_views | |
input_images = images[:, :V_in, ...] | |
input_C2W = C2W[:, :V_in, ...] | |
input_fxfycxcy = fxfycxcy[:, :V_in, ...] | |
if self.opt.input_normal: | |
input_images = torch.cat([input_images, data["normal"][:, :V_in, ...]], dim=2) | |
if self.opt.input_coord: | |
input_images = torch.cat([input_images, data["coord"][:, :V_in, ...]], dim=2) | |
if self.opt.input_mr: | |
input_images = torch.cat([input_images, data["mr"][:, :V_in, :2]], dim=2) | |
# Get GS latents, KL divergence and ground-truth GS | |
if latents is None or kl is None or gs is None: | |
context = torch.no_grad() if use_tiny_decoder else torch.enable_grad() | |
# Reconstruct & Encode | |
with context: | |
latents, kl, gs = self.get_gslatents(gsrecon, input_images, input_C2W, input_fxfycxcy, return_kl=True, return_gs=True) | |
outputs["kl"] = kl / (sum(latents.shape[1:])) | |
# Decode | |
recon_gs = self.decode(latents, use_tiny_decoder) | |
recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in) | |
gs = rearrange(gs, "(b v) c h w -> b v c h w", v=V_in) | |
recon_model_outputs = { | |
"rgb": recon_gs[:, :, :3, ...], | |
"scale": recon_gs[:, :, 3:6, ...], | |
"rotation": recon_gs[:, :, 6:10, ...], | |
"opacity": recon_gs[:, :, 10:11, ...], | |
"depth": recon_gs[:, :, 11:12, ...], | |
} | |
render_outputs = gsrecon.gs_renderer.render(recon_model_outputs, input_C2W, input_fxfycxcy, C2W, fxfycxcy) | |
for k in render_outputs.keys(): | |
render_outputs[k] = render_outputs[k].to(dtype) | |
render_images = render_outputs["image"] # (B, V, 3, H, W) | |
render_masks = render_outputs["alpha"] # (B, V, 1, H, W) | |
render_coords = render_outputs["coord"] # (B, V, 3, H, W) | |
render_normals = render_outputs["normal"] # (B, V, 3, H, W) | |
# For visualization | |
outputs["images_render"] = render_images | |
outputs["images_gt"] = images | |
if self.opt.vis_coords: | |
outputs["images_coord"] = render_coords | |
if self.opt.load_coord: | |
outputs["images_gt_coord"] = data["coord"] | |
if self.opt.vis_normals: | |
outputs["images_normal"] = render_normals | |
if self.opt.load_normal: | |
outputs["images_gt_normal"] = data["normal"] | |
# if self.opt.input_mr: | |
# outputs["images_mr"] = data["mr"] | |
################################ Compute reconstruction losses/metrics ################################ | |
outputs["latent_mse"] = latent_mse = tF.mse_loss(gs, recon_gs) | |
outputs["image_mse"] = image_mse = tF.mse_loss(images, render_images) | |
outputs["mask_mse"] = mask_mse = tF.mse_loss(masks, render_masks) | |
loss = image_mse + mask_mse | |
# Depth & Normal | |
if self.opt.coord_weight > 0: | |
assert self.opt.load_coord | |
outputs["coord_mse"] = coord_mse = tF.mse_loss(data["coord"], render_coords) | |
loss += self.opt.coord_weight * coord_mse | |
if self.opt.normal_weight > 0: | |
assert self.opt.load_normal | |
outputs["normal_cosim"] = normal_cosim = tF.cosine_similarity(data["normal"], render_normals, dim=2).mean() | |
loss += self.opt.normal_weight * (1. - normal_cosim) | |
# LPIPS | |
if step < self.opt.lpips_warmup_start: | |
lpips_weight = 0. | |
elif step > self.opt.lpips_warmup_end: | |
lpips_weight = self.opt.lpips_weight | |
else: | |
lpips_weight = self.opt.lpips_weight * (step - self.opt.lpips_warmup_start) / ( | |
self.opt.lpips_warmup_end - self.opt.lpips_warmup_start) | |
if lpips_weight > 0.: | |
outputs["lpips"] = lpips = lpips_loss( | |
# Downsampled to at most 256 to reduce memory cost | |
tF.interpolate( | |
rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., | |
(self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False | |
) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., | |
tF.interpolate( | |
rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1., | |
(self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False | |
) if self.opt.lpips_resize > 0 else rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1., | |
).mean() | |
loss += lpips_weight * lpips | |
outputs["loss"] = self.opt.recon_weight * latent_mse + self.opt.render_weight * loss | |
# Metric: PSNR, SSIM and LPIPS | |
with torch.no_grad(): | |
outputs["psnr"] = -10 * torch.log10(torch.mean((images - render_images.detach()) ** 2)) | |
outputs["ssim"] = torch.tensor(calculate_ssim( | |
(rearrange(images, "b v c h w -> (b v c) h w") | |
.cpu().float().numpy() * 255.).astype(np.uint8), | |
(rearrange(render_images.detach(), "b v c h w -> (b v c) h w") | |
.cpu().float().numpy() * 255.).astype(np.uint8), | |
channel_axis=0, | |
), device=images.device) | |
if lpips_weight <= 0.: | |
outputs["lpips"] = lpips = lpips_loss( | |
# Downsampled to at most 256 to reduce memory cost | |
tF.interpolate( | |
rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., | |
(self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False | |
) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., | |
tF.interpolate( | |
rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1., | |
(self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False | |
) if self.opt.lpips_resize > 0 else rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1., | |
).mean() | |
return outputs | |
def get_gslatents(self, | |
gsrecon: GSRecon, | |
input_images: Tensor, | |
input_C2W: Tensor, | |
input_fxfycxcy: Tensor, | |
return_kl: bool = False, | |
return_gs: bool = False, | |
) -> Union[Tuple[Tensor, Tensor], Tensor]: | |
(B, V_in), chunk = input_images.shape[:2], self.opt.chunk_size | |
# Reconstruction | |
gs = [] | |
for i in range(0, B, chunk): | |
gsrecon_outputs = gsrecon.forward_gaussians( | |
input_images[i:min(B, i+chunk)], | |
input_C2W[i:min(B, i+chunk)], | |
input_fxfycxcy[i:min(B, i+chunk)], | |
) | |
_gs = torch.cat([ | |
gsrecon_outputs["rgb"], | |
gsrecon_outputs["scale"], | |
gsrecon_outputs["rotation"], | |
gsrecon_outputs["opacity"], | |
gsrecon_outputs["depth"], | |
], dim=2) # (`chunk`, V_in, C=12, H, W) | |
gs.append(_gs) | |
gs = torch.cat(gs, dim=0) # (B, V_in, C=12, H, W) | |
gs = rearrange(gs, "b v c h w -> (b v) c h w") | |
# GSVAE encoding | |
latents, kl = [], 0. | |
for i in range(0, B*V_in, chunk): | |
_latents, _kl = self.encode(gs[i:min(B*V_in, i+chunk)], deterministic=(not self.training)) # (`chunk`, D=4, H', W') | |
latents.append(_latents) | |
kl += (_latents.shape[0] * _kl) | |
latents = torch.cat(latents, dim=0) # (B*V_in, D=4, H', W') | |
kl /= latents.shape[0] | |
results = [latents] | |
if return_kl: | |
results.append(kl) | |
if return_gs: | |
results.append(gs) | |
if len(results) == 1: # only return latents | |
return results[0] | |
else: | |
return tuple(results) | |
def decode_gslatents(self, latents: Tensor, use_tiny_decoder: bool = False) -> Dict[str, Tensor]: | |
V_in = self.opt.num_input_views | |
B, chunk = latents.shape[0] // self.opt.num_input_views, self.opt.chunk_size | |
# GSVAE decoding | |
recon_gs = [] | |
for i in range(0, B*V_in, chunk): | |
_recon_gs = self.decode(latents[i:min(B*V_in, i+chunk)], use_tiny_decoder) # (`chunk`, C=12, H, W) | |
recon_gs.append(_recon_gs) | |
recon_gs = torch.cat(recon_gs, dim=0) # (B*V_in, C=12, H, W) | |
recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in) | |
recon_gsrecon_outputs = { | |
"rgb": recon_gs[:, :, :3, ...], | |
"scale": recon_gs[:, :, 3:6, ...], | |
"rotation": recon_gs[:, :, 6:10, ...], | |
"opacity": recon_gs[:, :, 10:11, ...], | |
"depth": recon_gs[:, :, 11:12, ...], | |
} | |
return recon_gsrecon_outputs | |
def decode_and_render_gslatents(self, | |
gsrecon: GSRecon, | |
latents: Tensor, | |
input_C2W: Tensor, | |
input_fxfycxcy: Tensor, | |
C2W: Optional[Tensor] = None, | |
fxfycxcy: Optional[Tensor] = None, | |
height: Optional[float] = None, | |
width: Optional[float] = None, | |
scaling_modifier: int = 1, | |
opacity_threshold: float = 0., | |
use_tiny_decoder: bool = False, | |
) -> Dict[str, Tensor]: | |
C2W = C2W if C2W is not None else input_C2W | |
fxfycxcy = fxfycxcy if fxfycxcy is not None else input_fxfycxcy | |
recon_gsrecon_outputs = self.decode_gslatents(latents, use_tiny_decoder) | |
render_outputs = gsrecon.gs_renderer.render( | |
recon_gsrecon_outputs, | |
input_C2W, input_fxfycxcy, C2W, fxfycxcy, | |
height=height, width=width, | |
scaling_modifier=scaling_modifier, | |
opacity_threshold=opacity_threshold, | |
) | |
return render_outputs # (B, V, 3 or 1, H, W) | |
def encode(self, gs: Tensor, deterministic=False) -> Tuple[Tensor, Tensor]: | |
if self.opt.freeze_encoder or self.opt.use_tinyae: | |
self.vae.encoder.eval() | |
self.vae.quant_conv.eval() | |
assert gs.ndim == 4 # (B*V, C=12, H, W) | |
if not self.opt.use_tinyae: | |
latent_dist: DiagonalGaussianDistribution = self.vae.encode(gs).latent_dist | |
latents = latent_dist.sample() if not deterministic else latent_dist.mode() # (B*V, D=4, H, W) | |
kl = latent_dist.kl().mean() | |
else: | |
latents = self.vae.encode(gs).latents # (B*V, D=4, H, W) | |
kl = torch.zeros(1, dtype=latents.dtype, device=latents.device) # dummy | |
return latents, kl | |
def decode(self, z: Tensor, use_tiny_decoder: bool = False) -> Tensor: | |
if not hasattr(self, "tiny_decoder"): | |
use_tiny_decoder = False | |
if use_tiny_decoder: | |
original_decoder = self.vae.decoder | |
self.vae.decoder = self.tiny_decoder | |
assert isinstance(self.vae.decoder, DecoderTiny) | |
# NOTE: NOT exclude the origin `self.vae.post_quant_conv` for tiny decoder here | |
# But we conduct full fine-tuning for VAE and tiny decoder, so it should be fine | |
z = self.scaling_factor * (z - self.shift_factor) # `AutoencoderTiny` uses scaled (and shifted) latents | |
recon_gs = self.vae.decode(z).sample.clamp(-1., 1.) # (B*V, C=12, H, W) | |
# Change back to the original decoder | |
if use_tiny_decoder: | |
self.vae.decoder = original_decoder | |
assert isinstance(self.vae.decoder, Decoder) | |
return recon_gs | |