Diffsplat / src /train_gsdiff_sd3.py
paulpanwang's picture
Upload folder using huggingface_hub
476e0f0 verified
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error() # ignore diffusers warnings
from typing import *
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel
from accelerate.optimizer import AcceleratedOptimizer
from accelerate.scheduler import AcceleratedScheduler
from accelerate.data_loader import DataLoaderShard
import os
import argparse
import logging
import math
from collections import defaultdict
from packaging import version
import gc
from tqdm import tqdm
import wandb
import numpy as np
from skimage.metrics import structural_similarity as calculate_ssim
from lpips import LPIPS
import torch
import torch.nn.functional as tF
from einops import rearrange, repeat
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.training_utils import compute_snr, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from src.options import opt_dict, Options
from src.data import GObjaverseParquetDataset, ParquetChunkDataSource, MultiEpochsChunkedDataLoader, yield_forever
from src.models import GSAutoencoderKL, GSRecon, get_optimizer, get_lr_scheduler
import src.utils.util as util
import src.utils.geo_util as geo_util
import src.utils.vis_util as vis_util
from extensions.diffusers_diffsplat import MyEMAModel, SD3TransformerMV2DModel, StableMVDiffusion3Pipeline
@torch.no_grad()
def log_validation(
dataloader, negative_prompt_embed, negative_pooled_prompt_embed, lpips_loss, gsrecon, gsvae, vae, transformer,
global_step, accelerator, args, opt: Options,
):
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(opt.pretrained_model_name_or_path, subfolder="scheduler")
pipeline = StableMVDiffusion3Pipeline(
text_encoder=None, tokenizer=None,
text_encoder_2=None, tokenizer_2=None,
text_encoder_3=None, tokenizer_3=None,
vae=vae, transformer=accelerator.unwrap_model(transformer),
scheduler=noise_scheduler,
)
pipeline.set_progress_bar_config(disable=True)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
images_dictlist, metrics_dictlist = defaultdict(list), defaultdict(list)
val_progress_bar = tqdm(
range(len(dataloader)) if args.max_val_steps is None else range(args.max_val_steps),
desc=f"Validation",
ncols=125,
disable=not accelerator.is_main_process
)
for i, batch in enumerate(dataloader):
V_in, V_cond, V = opt.num_input_views, opt.num_cond_views, opt.num_views # TODO: not support V_cond > V_in by now
cond_idx = [0] # the first view must be in inputs
if V_cond > 1:
cond_idx += np.random.choice(range(1, V), V_cond-1, replace=False).tolist()
imgs_cond = batch["image"][:, cond_idx, ...] # (B, V_cond, 3, H, W)
B = imgs_cond.shape[0]
imgs_out = batch["image"] # (B, V, 3, H, W); for visualization and evaluation
imgs_out = rearrange(imgs_out, "b v c h w -> (b v) c h w")
prompt_embeds = batch["prompt_embed"] # (B, N, D)
negative_prompt_embeds = repeat(negative_prompt_embed.to(accelerator.device), "n d -> b n d", b=B)
pooled_prompt_embeds = batch["pooled_prompt_embed"] # (B, D)
negative_pooled_prompt_embeds = repeat(negative_pooled_prompt_embed.to(accelerator.device), "d -> b d", b=B)
C2W = batch["C2W"]
fxfycxcy = batch["fxfycxcy"]
input_C2W = C2W[:, :V_in, ...]
input_fxfycxcy = fxfycxcy[:, :V_in, ...]
cond_C2W = C2W[:, cond_idx,...]
cond_fxfycxcy = fxfycxcy[:, cond_idx,...]
# Plucker embeddings
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W, input_fxfycxcy) # (B, V_in, 6, H, W)
if opt.view_concat_condition:
cond_plucker, _ = geo_util.plucker_ray(H, W, cond_C2W, cond_fxfycxcy) # (B, V_cond, 6, H, W)
plucker = torch.cat([cond_plucker, plucker], dim=1) # (B, V_cond+V_in, 6, H, W)
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
else:
plucker = None
images_dictlist["gt"].append(imgs_out) # (B*V, C=3, H, W)
if opt.vis_coords and opt.load_coord:
coords_out = rearrange(batch["coord"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist["gt_coord"].append(coords_out)
if opt.vis_normals and opt.load_normal:
normals_out = rearrange(batch["normal"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist["gt_normal"].append(normals_out)
with torch.autocast("cuda", torch.bfloat16):
for guidance_scale in sorted(args.val_guidance_scales):
out = pipeline(
imgs_cond, num_inference_steps=opt.num_inference_steps, guidance_scale=guidance_scale,
output_type="latent", generator=generator,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
plucker=plucker, num_views=V_in,
init_std=opt.init_std, init_noise_strength=opt.init_noise_strength, init_bg=opt.init_bg,
).images
# Rendering GS latents
out = out / gsvae.scaling_factor + gsvae.shift_factor
render_outputs = gsvae.decode_and_render_gslatents(gsrecon, out, input_C2W, input_fxfycxcy, C2W, fxfycxcy)
render_images = rearrange(render_outputs["image"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist[f"pred_cfg{guidance_scale:.1f}"].append(render_images)
if opt.vis_coords:
render_coords = rearrange(render_outputs["coord"], "b v c h w -> (b v) c h w") # (B*V, 3, H, W)
images_dictlist[f"pred_coord_cfg{guidance_scale:.1f}"].append(render_coords)
if opt.vis_normals:
render_normals = rearrange(render_outputs["normal"], "b v c h w -> (b v) c h w") # (B*V, 3, H, W)
images_dictlist[f"pred_normal_cfg{guidance_scale:.1f}"].append(render_normals)
# Decode to pseudo images
if opt.vis_pseudo_images:
out = (out - gsvae.shift_factor) * gsvae.scaling_factor / vae.config.scaling_factor + vae.config.shift_factor
images = vae.decode(out).sample.clamp(-1., 1.) * 0.5 + 0.5
images_dictlist[f"pred_image_cfg{guidance_scale:.1f}"].append(images) # (B*V_in, 3, H, W)
################################ Compute generation metrics ################################
lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(imgs_out * 2. - 1., (256, 256), mode="bilinear", align_corners=False),
tF.interpolate(render_images * 2. - 1., (256, 256), mode="bilinear", align_corners=False)
).mean()
psnr = -10. * torch.log10(tF.mse_loss(imgs_out, render_images))
ssim = torch.tensor(calculate_ssim(
(rearrange(imgs_out, "bv c h w -> (bv c) h w").cpu().float().numpy() * 255.).astype(np.uint8),
(rearrange(render_images, "bv c h w -> (bv c) h w").cpu().float().numpy() * 255.).astype(np.uint8),
channel_axis=0,
), device=render_images.device)
lpips = accelerator.gather_for_metrics(lpips.repeat(B)).mean()
psnr = accelerator.gather_for_metrics(psnr.repeat(B)).mean()
ssim = accelerator.gather_for_metrics(ssim.repeat(B)).mean()
metrics_dictlist[f"lpips_cfg{guidance_scale:.1f}"].append(lpips)
metrics_dictlist[f"psnr_cfg{guidance_scale:.1f}"].append(psnr)
metrics_dictlist[f"ssim_cfg{guidance_scale:.1f}"].append(ssim)
if opt.coord_weight > 0.:
assert opt.load_coord
coord_mse = tF.mse_loss(coords_out, render_coords)
coord_mse = accelerator.gather_for_metrics(coord_mse.repeat(B)).mean()
metrics_dictlist[f"coord_mse_cfg{guidance_scale:.1f}"].append(coord_mse)
if opt.normal_weight > 0.:
assert opt.load_normal
normal_cosim = tF.cosine_similarity(normals_out, render_normals, dim=2).mean()
normal_cosim = accelerator.gather_for_metrics(normal_cosim.repeat(B)).mean()
metrics_dictlist[f"normal_cosim_cfg{guidance_scale:.1f}"].append(normal_cosim)
# Only log the last (biggest) cfg metrics in the progress bar
val_logs = {
"lpips": lpips.item(),
"psnr": psnr.item(),
"ssim": ssim.item(),
}
val_progress_bar.set_postfix(**val_logs)
val_progress_bar.update(1)
if args.max_val_steps is not None and i == (args.max_val_steps - 1):
break
val_progress_bar.close()
if accelerator.is_main_process:
formatted_images = []
for k, v in images_dictlist.items(): # "gs_gt", "pred_cfg1.0", "pred_cfg3.0", ...
mvimages = torch.cat(v, dim=0) # (N*B*V, C, H, W)
mvimages = rearrange(mvimages, "(nb v) c h w -> nb v c h w", v=V if "image" not in k else V_in)
mvimages = mvimages[:min(mvimages.shape[0], 4), ...] # max show `4` samples; TODO: make it configurable
mvimages = rearrange(mvimages, "nb v c h w -> c (nb h) (v w)")
mvimages = vis_util.tensor_to_image(mvimages.detach())
formatted_images.append(wandb.Image(mvimages, caption=k))
wandb.log({"images/validation": formatted_images}, step=global_step)
for k, v in metrics_dictlist.items(): # "lpips_cfg1.0", "psnr_cfg3.0", ...
if "cfg1.0" in k:
wandb.log({f"validation_cfg1.0/{k}": torch.tensor(v).mean().item()}, step=global_step)
else:
wandb.log({f"validation/{k}": torch.tensor(v).mean().item()}, step=global_step)
def main():
PROJECT_NAME = "DiffSplat"
parser = argparse.ArgumentParser(
description="Train a diffusion model for 3D object generation",
)
parser.add_argument(
"--config_file",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
required=True,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Path to the output directory"
)
parser.add_argument(
"--hdfs_dir",
type=str,
default=None,
help="Path to the HDFS directory to save checkpoints"
)
parser.add_argument(
"--wandb_token_path",
type=str,
default="wandb/token",
help="Path to the WandB login token"
)
parser.add_argument(
"--resume_from_iter",
type=int,
default=None,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--offline_wandb",
action="store_true",
help="Use offline WandB for experiment tracking"
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="The max iteration step for training"
)
parser.add_argument(
"--max_val_steps",
type=int,
default=1,
help="The max iteration step for validation"
)
parser.add_argument(
"--num_workers",
type=int,
default=32,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Pin memory for the data loader"
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Use EMA model for training"
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale lr with total batch size (base batch size: 256)"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.,
help="Max gradient norm for gradient clipping"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help="Type of mixed precision training"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--val_guidance_scales",
type=list,
nargs="+",
default=[1., 3., 7.5],
help="CFG scale used for validation"
)
parser.add_argument(
"--use_deepspeed",
action="store_true",
help="Use DeepSpeed for training"
)
parser.add_argument(
"--zero_stage",
type=int,
default=1,
choices=[1, 2, 3], # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
help="ZeRO stage type for DeepSpeed"
)
parser.add_argument(
"--load_pretrained_gsrecon",
type=str,
default="gsrecon_gobj265k_cnp_even4",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_gsrecon_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
parser.add_argument(
"--load_pretrained_gsvae",
type=str,
default="gsvae_gobj265k_sd3",
help="Tag of a pretrained GSVAE in this project"
)
parser.add_argument(
"--load_pretrained_gsvae_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSVAE checkpoint"
)
parser.add_argument(
"--load_pretrained_model",
type=str,
default=None,
help="Tag of a pretrained MVTransformer in this project"
)
parser.add_argument(
"--load_pretrained_model_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained MVTransformer checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
args.val_guidance_scales = [float(x[0]) if isinstance(x, list) else float(x) for x in args.val_guidance_scales]
# Parse the config file
configs = util.get_configs(args.config_file, extras) # change yaml configs by `extras`
# Parse the option dict
opt = opt_dict[configs["opt_type"]]
if "opt" in configs:
for k, v in configs["opt"].items():
setattr(opt, k, v)
opt.__post_init__()
# Create an experiment directory using the `tag`
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
if args.hdfs_dir is not None:
args.project_hdfs_dir = args.hdfs_dir
args.hdfs_dir = os.path.join(args.hdfs_dir, args.tag)
os.system(f"hdfs dfs -mkdir -p {args.hdfs_dir}")
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = get_accelerate_logger(__name__, log_level="INFO")
file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.logger.addHandler(file_handler)
logger.logger.propagate = True # propagate to the root logger (console)
# Set DeepSpeed config
if args.use_deepspeed:
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.max_grad_norm,
zero_stage=int(args.zero_stage),
offload_optimizer_device="cpu", # hard-coded here, TODO: make it configurable
)
else:
deepspeed_plugin = None
# Initialize the accelerator
accelerator = Accelerator(
project_dir=exp_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
split_batches=False, # batch size per GPU
dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
deepspeed_plugin=deepspeed_plugin,
)
logger.info(f"Accelerator state:\n{accelerator.state}\n")
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Prepare dataset
if accelerator.is_local_main_process:
if not os.path.exists("/tmp/test_dataset"):
os.system(opt.dataset_setup_script)
accelerator.wait_for_everyone() # other processes wait for the main process
# Load the training and validation dataset
assert opt.file_dir_train is not None and opt.file_name_train is not None and \
opt.file_dir_test is not None and opt.file_name_test is not None
train_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_train, opt.file_name_train),
shuffle=True,
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=True,
)
val_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_test, opt.file_name_test),
shuffle=True, # shuffle for various visualization
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=False,
)
train_loader = MultiEpochsChunkedDataLoader(
train_dataset,
batch_size=configs["train"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
val_loader = MultiEpochsChunkedDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
logger.info(f"Load [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")
negative_prompt_embed = train_dataset.negative_prompt_embed
negative_pooled_prompt_embed = train_dataset.negative_pooled_prompt_embed
# Compute the effective batch size and scale learning rate
total_batch_size = configs["train"]["batch_size_per_gpu"] * \
accelerator.num_processes * args.gradient_accumulation_steps
configs["train"]["total_batch_size"] = total_batch_size
if args.scale_lr:
configs["optimizer"]["lr"] *= (total_batch_size / 256)
configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
# LPIPS loss
if accelerator.is_main_process:
_ = LPIPS(net="vgg")
del _
accelerator.wait_for_everyone() # wait for pretrained backbone weights to be downloaded
lpips_loss = LPIPS(net="vgg").to(accelerator.device)
lpips_loss = lpips_loss.requires_grad_(False)
lpips_loss.eval()
# GSRecon
gsrecon = GSRecon(opt)
gsrecon = gsrecon.requires_grad_(False)
gsrecon = gsrecon.eval()
# Initialize the model, optimizer and lr scheduler
in_channels = 16 # hard-coded for SD3
if opt.input_concat_plucker:
in_channels += 6
if opt.input_concat_binary_mask:
in_channels += 1
transformer_from_pretrained_kwargs = {
"sample_size": opt.input_res // 8, # `8` hard-coded for SD3
"in_channels": in_channels,
"zero_init_conv_in": opt.zero_init_conv_in,
"view_concat_condition": opt.view_concat_condition,
"input_concat_plucker": opt.input_concat_plucker,
"input_concat_binary_mask": opt.input_concat_binary_mask,
}
vae = AutoencoderKL.from_pretrained(opt.pretrained_model_name_or_path, subfolder="vae")
if args.load_pretrained_model is None:
transformer, loading_info = SD3TransformerMV2DModel.from_pretrained_new(opt.pretrained_model_name_or_path, subfolder="transformer",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
logger.info(f"Loading info: {loading_info}\n")
else:
logger.info(f"Load MVTransformer EMA checkpoint from [{args.load_pretrained_model}] iteration [{args.load_pretrained_model_ckpt:06d}]\n")
args.load_pretrained_model_ckpt = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_model, "checkpoints"),
args.load_pretrained_model_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_model_ckpt),
None, # `None`: not load model ckpt here
accelerator, # manage the process states
)
path = f"out/{args.load_pretrained_model}/checkpoints/{args.load_pretrained_model_ckpt:06d}"
os.system(f"python3 extensions/merge_safetensors.py {path}/transformer_ema") # merge safetensors for loading
transformer, loading_info = SD3TransformerMV2DModel.from_pretrained_new(path, subfolder="transformer_ema",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
logger.info(f"Loading info: {loading_info}\n")
gsvae = GSAutoencoderKL(opt)
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(opt.pretrained_model_name_or_path, subfolder="scheduler")
if args.use_ema:
ema_transformer = MyEMAModel(
transformer.parameters(),
model_cls=SD3TransformerMV2DModel,
model_config=transformer.config,
**configs["train"]["ema_kwargs"]
)
# Freeze VAE and GSVAE
vae.requires_grad_(False)
gsvae.requires_grad_(False)
vae.eval()
gsvae.eval()
trainable_module_names = []
if opt.trainable_modules is None:
transformer.requires_grad_(True)
else:
transformer.requires_grad_(False)
for name, module in transformer.named_modules():
for module_name in tuple(opt.trainable_modules.split(",")):
if module_name in name:
for params in module.parameters():
params.requires_grad = True
trainable_module_names.append(name)
logger.info(f"Trainable parameter names: {trainable_module_names}\n")
# transformer.enable_xformers_memory_efficient_attention() # use `tF.scaled_dot_product_attention` instead
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# Create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
# NOTE: `pos_embed` of SD3 is not fixed parameters (register_buffer) as those in `PatchEmbed`,
# so `model = self.model_cls.from_config(self.model_config)` in `EMAModel`
# will initialize a wrong weight for `transformer.pos_embed.pos_embed`.
# Here, we manually handle this case for saving transformer EMA parameters.
# ema_transformer.save_pretrained(os.path.join(output_dir, "transformer_ema"))
from copy import deepcopy
model = deepcopy(accelerator.unwrap_model(transformer))
state_dict = ema_transformer.state_dict()
state_dict.pop("shadow_params", None)
model.register_to_config(**state_dict)
ema_transformer.copy_to(model.parameters())
model.save_pretrained(os.path.join(output_dir, "transformer_ema"))
del model
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
# Make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = MyEMAModel.from_pretrained(os.path.join(input_dir, "transformer_ema"), SD3TransformerMV2DModel)
ema_transformer.load_state_dict(load_model.state_dict())
ema_transformer.to(accelerator.device)
del load_model
for _ in range(len(models)):
# Pop models so that they are not loaded again
model = models.pop()
# Load diffusers style into model
load_model = SD3TransformerMV2DModel.from_pretrained(input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if opt.grad_checkpoint:
transformer.enable_gradient_checkpointing()
params, params_lr_mult, names_lr_mult = [], [], []
for name, param in transformer.named_parameters():
if opt.name_lr_mult is not None:
for k in opt.name_lr_mult.split(","):
if k in name:
params_lr_mult.append(param)
names_lr_mult.append(name)
if name not in names_lr_mult:
params.append(param)
else:
params.append(param)
optimizer = get_optimizer(
params=[
{"params": params, "lr": configs["optimizer"]["lr"]},
{"params": params_lr_mult, "lr": configs["optimizer"]["lr"] * opt.lr_mult}
],
**configs["optimizer"]
)
logger.info(f"Learning rate x [{opt.lr_mult}] parameter names: {names_lr_mult}\n")
configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps) # only account updated steps
configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes # for lr scheduler setting
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes # for lr scheduler setting
lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes # reset for multi-gpu
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes # reset for multi-gpu
# Load pretrained reconstruction and gsvae models
logger.info(f"Load GSVAE checkpoint from [{args.load_pretrained_gsvae}] iteration [{args.load_pretrained_gsvae_ckpt:06d}]\n")
gsvae = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsvae, "checkpoints"),
args.load_pretrained_gsvae_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsvae),
gsvae, accelerator
)
logger.info(f"Load GSRecon checkpoint from [{args.load_pretrained_gsrecon}] iteration [{args.load_pretrained_gsrecon_ckpt:06d}]\n")
gsrecon = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsrecon, "checkpoints"),
args.load_pretrained_gsrecon_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsrecon),
gsrecon, accelerator
)
# Prepare everything with `accelerator`
transformer, optimizer, lr_scheduler, train_loader, val_loader = accelerator.prepare(
transformer, optimizer, lr_scheduler, train_loader, val_loader
)
# Set classes explicitly for everything
transformer: DistributedDataParallel
optimizer: AcceleratedOptimizer
lr_scheduler: AcceleratedScheduler
train_loader: DataLoaderShard
val_loader: DataLoaderShard
if args.use_ema:
ema_transformer.to(accelerator.device)
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move `gsrecon`, `vae` and `gsvae` to gpu and cast to `weight_dtype`
gsrecon.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
gsvae.to(accelerator.device, dtype=weight_dtype)
# Training configs after distribution and accumulation setup
updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
total_updated_steps = configs["lr_scheduler"]["total_steps"]
if args.max_train_steps is None:
args.max_train_steps = total_updated_steps
assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
logger.info(f"Total batch size: [{total_batch_size}]")
logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
logger.info(f"Total epochs: [{configs['train']['epochs']}]")
logger.info(f"Total steps: [{total_updated_steps}]")
logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
logger.info(f"Steps for validation: [{len(val_loader)}]\n")
# (Optional) Load checkpoint
global_update_step = 0
if args.resume_from_iter is not None:
logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
# Download from HDFS
if not os.path.exists(os.path.join(ckpt_dir, f'{args.resume_from_iter:06d}')):
args.resume_from_iter = util.load_ckpt(
ckpt_dir,
args.resume_from_iter,
args.hdfs_dir,
None, # `None`: not load model ckpt here
accelerator, # manage the process states
)
# Load everything
accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}")) # torch < 2.4.0 here for `weights_only=False`
global_update_step = int(args.resume_from_iter)
# Save all experimental parameters and model architecture of this run to a file (args and configs)
if accelerator.is_main_process:
exp_params = util.save_experiment_params(args, configs, opt, exp_dir)
util.save_model_architecture(accelerator.unwrap_model(transformer), exp_dir)
# WandB logger
if accelerator.is_main_process:
if args.offline_wandb:
os.environ["WANDB_MODE"] = "offline"
with open(args.wandb_token_path, "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
wandb.init(
project=PROJECT_NAME, name=args.tag,
config=exp_params, dir=exp_dir,
resume=True
)
# Wandb artifact for logging experiment information
arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
arti_exp_info.add_file(os.path.join(exp_dir, "log.txt")) # only save the log before training
wandb.log_artifact(arti_exp_info)
def get_sigmas(timesteps: Tensor, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(dtype=dtype, device=accelerator.device)
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero()[0].item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Start training
logger.logger.propagate = False # not propagate to the root logger (console)
progress_bar = tqdm(
range(total_updated_steps),
initial=global_update_step,
desc="Training",
ncols=125,
disable=not accelerator.is_main_process
)
for batch in yield_forever(train_loader):
if global_update_step == args.max_train_steps:
progress_bar.close()
logger.logger.propagate = True # propagate to the root logger (console)
if accelerator.is_main_process:
wandb.finish()
logger.info("Training finished!\n")
return
transformer.train()
with accelerator.accumulate(transformer):
V_in, V_cond, V = opt.num_input_views, opt.num_cond_views, opt.num_views # TODO: not support V_cond > V_in by now
cond_idx = [0] # the first view must be in inputs
if V_cond > 1:
cond_idx += np.random.choice(range(1, V), V_cond-1, replace=False).tolist()
imgs_cond = batch["image"][:, cond_idx, ...] # (B, V_cond, 3, H, W)
B = imgs_cond.shape[0]
prompt_embeds = batch["prompt_embed"] # (B, N, D)
negative_prompt_embeds = repeat(negative_prompt_embed.to(accelerator.device), "n d -> b n d", b=B)
pooled_prompt_embeds = batch["pooled_prompt_embed"] # (B, D)
negative_pooled_prompt_embeds = repeat(negative_pooled_prompt_embed.to(accelerator.device), "d -> b d", b=B)
imgs_out = batch["image"][:, :V_in, ...]
C2W = batch["C2W"]
fxfycxcy = batch["fxfycxcy"]
(
imgs_cond, prompt_embeds, negative_prompt_embeds,
pooled_prompt_embeds, negative_pooled_prompt_embeds,
imgs_out, C2W, fxfycxcy
) = (
imgs_cond.to(weight_dtype),
prompt_embeds.to(weight_dtype),
negative_prompt_embeds.to(weight_dtype),
pooled_prompt_embeds.to(weight_dtype),
negative_pooled_prompt_embeds.to(weight_dtype),
imgs_out.to(weight_dtype),
C2W.to(weight_dtype),
fxfycxcy.to(weight_dtype),
)
input_C2W = C2W[:, :V_in, ...]
input_fxfycxcy = fxfycxcy[:, :V_in, ...]
cond_C2W = C2W[:, cond_idx, ...]
cond_fxfycxcy = fxfycxcy[:, cond_idx,...]
# (Optional) Plucker embeddings
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W, input_fxfycxcy) # (B, V_in, 6, H, W)
if opt.view_concat_condition:
cond_plucker, _ = geo_util.plucker_ray(H, W, cond_C2W, cond_fxfycxcy) # (B, V_cond, 6, H, W)
plucker = torch.cat([cond_plucker, plucker], dim=1) # (B, V_cond+V_in, 6, H, W)
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
else:
plucker = None
# VAE input image condition
if opt.view_concat_condition:
with torch.no_grad():
imgs_cond = rearrange(imgs_cond, "b v c h w -> (b v) c h w")
image_latents = vae.config.scaling_factor * (vae.encode(
imgs_cond * 2. - 1.).latent_dist.sample() - vae.config.shift_factor) # (B*V_cond, 4, H', W')
image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond) # (B, V_cond, 4, H', W')
# Get GS latents
if opt.input_normal:
imgs_out = torch.cat([imgs_out, batch["normal"][:, :V_in, ...].to(weight_dtype)], dim=2)
if opt.input_coord:
imgs_out = torch.cat([imgs_out, batch["coord"][:, :V_in, ...].to(weight_dtype)], dim=2)
with torch.no_grad():
latents = gsvae.scaling_factor * (gsvae.get_gslatents(gsrecon, imgs_out, input_C2W, input_fxfycxcy) - gsvae.shift_factor) # (B*V_in, 4, H', W')
noise = torch.randn_like(latents)
# For weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=opt.weighting_scheme,
batch_size=B,
logit_mean=opt.logit_mean,
logit_std=opt.logit_std,
mode_scale=opt.mode_scale,
)
indices = (u * noise_scheduler.config.num_train_timesteps).long()
timesteps = noise_scheduler.timesteps[indices].to(accelerator.device)
timesteps = repeat(timesteps, "b -> (b v)", v=V_in) # same noise scale for different views of the same object
sigmas = get_sigmas(timesteps, len(latents.shape), weight_dtype)
latent_model_input = noisy_latents = (1. - sigmas) * latents + sigmas * noise
if opt.cfg_dropout_prob > 0.:
# Drop a group of multi-view images as a whole
random_p = torch.rand(B, device=latents.device)
# Sample masks for the conditioning VAE images
if opt.view_concat_condition:
image_mask_dtype = image_latents.dtype
image_mask = 1 - (
(random_p >= opt.cfg_dropout_prob).to(image_mask_dtype)
* (random_p < 3 * opt.cfg_dropout_prob).to(image_mask_dtype)
) # actual dropout rate is 2 * `cfg.condition_drop_rate`
image_mask = image_mask.reshape(B, 1, 1, 1, 1)
# Final VAE image conditioning
image_latents = image_mask * image_latents
# Sample masks for the conditioning text prompts
text_mask_dtype = prompt_embeds.dtype
text_mask = 1 - (
(random_p < 2 * opt.cfg_dropout_prob).to(text_mask_dtype)
) # actual dropout rate is 2 * `cfg.condition_drop_rate`
text_mask = text_mask.reshape(B, 1, 1)
# Final text conditioning
prompt_embeds = text_mask * prompt_embeds + (1 - text_mask) * negative_prompt_embeds
# Final pooled text conditioning
text_mask = text_mask.reshape(B, 1)
pooled_prompt_embeds = text_mask * pooled_prompt_embeds + (1 - text_mask) * negative_pooled_prompt_embeds
# Concatenate input latents with others
latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=V_in)
if opt.view_concat_condition:
latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W')
if opt.input_concat_plucker:
plucker = tF.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False)
plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=V_in + (V_cond if opt.view_concat_condition else 0))
latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W')
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
if opt.input_concat_binary_mask:
if opt.view_concat_condition:
latent_model_input = torch.cat([
torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2),
torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2),
], dim=1) # (B, V_in+V_cond, 4+6+1, H', W')
else:
latent_model_input = torch.cat([
torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2),
], dim=1) # (B, V_in, 4+6+1, H', W')
latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w")
timesteps_input = rearrange(timesteps, "(b v) -> b v", v=V_in)[:, 0] # (B,)
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps_input,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=dict(
num_views=opt.num_input_views + (V_cond if opt.view_concat_condition else 0),
),
).sample
# Only keep the noise prediction for the latents
if opt.view_concat_condition:
model_pred = rearrange(model_pred, "(b v) c h w -> b v c h w", v=V_in+V_cond)
model_pred = rearrange(model_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w")
if opt.precondition_outputs: # Section 5 of https://arxiv.org/abs/2206.00364
model_pred = model_pred * (-sigmas) + noisy_latents # predicted x_0
target = latents
else: # flow matching
target = noise - latents
# For these weighting schemes use a uniform timestep sampling, so post-weight the loss
weighting = compute_loss_weighting_for_sd3(opt.weighting_scheme, sigmas)
loss = weighting * tF.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = rearrange(loss, "(b v) c h w -> b v c h w", v=V_in)
loss = loss.mean(dim=list(range(1, len(loss.shape))))
# Rendering loss
use_rendering_loss = np.random.rand() < opt.rendering_loss_prob
if use_rendering_loss:
# Get predicted x_0
if opt.precondition_outputs:
pred_original_latents = model_pred
else:
pred_original_latents = model_pred * (-sigmas) + noisy_latents
# Render the predicted latents
pred_original_latents = pred_original_latents.to(weight_dtype)
pred_original_latents = pred_original_latents / gsvae.scaling_factor + gsvae.shift_factor
pred_render_outputs = gsvae.decode_and_render_gslatents(
gsrecon, pred_original_latents, input_C2W, input_fxfycxcy, C2W, fxfycxcy,
use_tiny_decoder=opt.use_tiny_decoder,
) # (B, V, 3 or 1, H, W)
image_mse = tF.mse_loss(batch["image"], pred_render_outputs["image"], reduction="none")
mask_mse = tF.mse_loss(batch["mask"], pred_render_outputs["alpha"], reduction="none")
render_loss = image_mse + mask_mse # (B, V, C, H, W)
# Depth & Normal
if opt.coord_weight > 0:
assert opt.load_coord
coord_mse = tF.mse_loss(batch["coord"], pred_render_outputs["coord"], reduction="none")
render_loss += opt.coord_weight * coord_mse # (B, V, C, H, W)
else:
coord_mse = None
if opt.normal_weight > 0:
assert opt.load_normal
normal_cosim = tF.cosine_similarity(batch["normal"], pred_render_outputs["normal"], dim=2).unsqueeze(2)
render_loss += opt.normal_weight * (1. - normal_cosim) # (B, V, C, H, W)
else:
normal_cosim = None
# LPIPS
if opt.lpips_weight > 0.:
lpips, chunk = [], opt.chunk_size
for i in range(B*V):
_lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(
rearrange(batch["image"], "b v c h w -> (b v) c h w")[i:min(B*V, i+chunk), ...] * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
),
tF.interpolate(
rearrange(pred_render_outputs["image"], "b v c h w -> (b v) c h w")[i:min(B*V, i+chunk), ...] * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
)
) # (`chunk`, 1, 1, 1)
lpips.append(_lpips)
lpips = torch.cat(lpips, dim=0) # (B*V, 1, 1, 1)
lpips = rearrange(lpips, "(b v) c h w -> b v c h w", v=V)
render_loss += opt.lpips_weight * lpips # (B, V, C, H, W)
render_loss = render_loss.mean(dim=list(range(1, len(render_loss.shape)))) # (B,)
if opt.snr_gamma_rendering > 0.:
timesteps = rearrange(timesteps, "(b v) -> b v", v=V_in)[:, 0] # (B,)
snr = compute_snr(noise_scheduler, timesteps)
mse_loss_weights = torch.stack([snr, opt.snr_gamma_rendering * torch.ones_like(timesteps)], dim=1).min(dim=1)[0]
render_loss = mse_loss_weights * render_loss
loss = opt.diffusion_weight * loss + opt.render_weight * render_loss # (B,)
# Metric: PNSR, SSIM and LPIPS
with torch.no_grad():
psnr = -10 * torch.log10(torch.mean((batch["image"] - pred_render_outputs["image"].detach()) ** 2))
ssim = torch.tensor(calculate_ssim(
(rearrange(batch["image"], "b v c h w -> (b v c) h w")
.cpu().float().numpy() * 255.).astype(np.uint8),
(rearrange(pred_render_outputs["image"].detach(), "b v c h w -> (b v c) h w")
.cpu().float().numpy() * 255.).astype(np.uint8),
channel_axis=0,
), device=batch["image"].device)
if opt.lpips_weight <= 0.:
lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(
rearrange(batch["image"], "b v c h w -> (b v) c h w") * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
),
tF.interpolate(
rearrange(pred_render_outputs["image"].detach(), "b v c h w -> (b v) c h w") * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
)
)
# Backpropagate
accelerator.backward(loss.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# Gather the losses across all processes for logging (if we use distributed training)
loss = accelerator.gather(loss.detach()).mean()
if use_rendering_loss:
psnr = accelerator.gather(psnr.detach()).mean()
ssim = accelerator.gather(ssim.detach()).mean()
lpips = accelerator.gather(lpips.detach()).mean()
render_loss = accelerator.gather(render_loss.detach()).mean()
if coord_mse is not None:
coord_mse = accelerator.gather(coord_mse.detach()).mean()
if normal_cosim is not None:
normal_cosim = accelerator.gather(normal_cosim.detach()).mean()
logs = {
"loss": loss.item(),
"lr": lr_scheduler.get_last_lr()[0]
}
if args.use_ema:
ema_transformer.step(transformer.parameters())
logs.update({"ema": ema_transformer.cur_decay_value})
if use_rendering_loss:
logs.update({"render_loss": render_loss.item()})
progress_bar.set_postfix(**logs)
progress_bar.update(1)
global_update_step += 1
logger.info(
f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
f", ema: {logs['ema']:.4f}" if args.use_ema else "" +
f", render: {logs['render_loss']:.4f}" if use_rendering_loss else ""
)
# Log the training progress
if global_update_step % configs["train"]["log_freq"] == 0 or global_update_step == 1 \
or global_update_step % updated_steps_per_epoch == 0: # last step of an epoch
if accelerator.is_main_process:
wandb.log({
"training/loss": logs["loss"],
"training/lr": logs["lr"],
}, step=global_update_step)
if args.use_ema:
wandb.log({
"training/ema": logs["ema"]
}, step=global_update_step)
if use_rendering_loss:
wandb.log({
"training/psnr": psnr.item(),
"training/ssim": ssim.item(),
"training/lpips": lpips.item(),
"training/render_loss": logs["render_loss"]
}, step=global_update_step)
if coord_mse is not None:
wandb.log({
"training/coord_mse": coord_mse.item()
}, step=global_update_step)
if normal_cosim is not None:
wandb.log({
"training/normal_cosim": normal_cosim.item()
}, step=global_update_step)
# Save checkpoint
if (global_update_step % configs["train"]["save_freq"] == 0 # 1. every `save_freq` steps
or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0 # 2. every `save_freq_epoch` epochs
or global_update_step == total_updated_steps): # 3. last step of an epoch
gc.collect()
if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
elif accelerator.is_main_process:
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
accelerator.wait_for_everyone() # ensure all processes have finished saving
if accelerator.is_main_process:
if args.hdfs_dir is not None:
util.save_ckpt(ckpt_dir, global_update_step, args.hdfs_dir)
gc.collect()
# Evaluate on the validation set
if (global_update_step == 1
or (global_update_step % configs["train"]["early_eval_freq"] == 0 and
global_update_step < configs["train"]["early_eval"]) # 1. more frequently at the beginning
or global_update_step % configs["train"]["eval_freq"] == 0 # 2. every `eval_freq` steps
or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0 # 3. every `eval_freq_epoch` epochs
or global_update_step == total_updated_steps): # 4. last step of an epoch
# Visualize images for rendering loss
if accelerator.is_main_process and use_rendering_loss:
train_vis_dict = {
"images_render": pred_render_outputs["image"], # (B, V, 3, H, W)
"images_gt": batch["image"], # (B, V, 3, H, W)
}
if opt.vis_coords:
train_vis_dict.update({
"images_coord": pred_render_outputs["coord"], # (B, V, 3, H, W)
})
if opt.load_coord:
train_vis_dict.update({
"images_gt_coord": batch["coord"] # (B, V, 3, H, W)
})
if opt.vis_normals:
train_vis_dict.update({
"images_normal": pred_render_outputs["normal"], # (B, V, 3, H, W)
})
if opt.load_normal:
train_vis_dict.update({
"images_gt_normal": batch["normal"] # (B, V, 3, H, W)
})
wandb.log({
"images/training": vis_util.wandb_mvimage_log(train_vis_dict)
}, step=global_update_step)
torch.cuda.empty_cache()
gc.collect()
# Use EMA parameters for evaluation
if args.use_ema:
# Store the Transformer parameters temporarily and load the EMA parameters to perform inference
ema_transformer.store(transformer.parameters())
ema_transformer.copy_to(transformer.parameters())
transformer.eval()
log_validation(
val_loader,
negative_prompt_embed,
negative_pooled_prompt_embed,
lpips_loss,
gsrecon,
gsvae,
vae,
transformer,
global_update_step,
accelerator,
args,
opt,
)
if args.use_ema:
# Switch back to the original Transformer parameters
ema_transformer.restore(transformer.parameters())
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()