attributionapi / app.py
chips
fixes
967d1e6
import os
os.environ["HUGGINGFACE_DEMO"] = "1" # set before import from app
from dotenv import load_dotenv
load_dotenv()
################################################################################################
import gradio as gr
import uuid
import shutil
from app.config import get_settings
from app.schemas.requests import Attribute
from app.request_handler import handle_extract
from app.services.factory import AIServiceFactory
settings = get_settings()
IMAGE_MAX_SIZE = 1536
async def forward_request(
attributes, product_taxonomy, product_data, ai_model, pil_images
):
# prepare temp folder
request_id = str(uuid.uuid4())
request_temp_folder = os.path.join("gradio_temp", request_id)
os.makedirs(request_temp_folder, exist_ok=True)
try:
# convert attributes to schema
attributes = "attributes_object = {" + attributes + "}"
try:
attributes = exec(attributes, globals())
except:
raise gr.Error(
"Invalid `Attribute Schema`. Please insert valid schema following the example."
)
for key, value in attributes_object.items(): # type: ignore
attributes_object[key] = Attribute(**value) # type: ignore
if product_data == "":
product_data = "{}"
product_data_code = f"product_data_object = {product_data}"
try:
exec(product_data_code, globals())
except:
raise gr.Error(
"Invalid `Product Data`. Please insert valid dictionary or leave it empty."
)
if pil_images is None:
raise gr.Error("Please upload image(s) of the product")
pil_images = [pil_image[0] for pil_image in pil_images]
img_paths = []
for i, pil_image in enumerate(pil_images):
if max(pil_image.size) > IMAGE_MAX_SIZE:
ratio = IMAGE_MAX_SIZE / max(pil_image.size)
pil_image = pil_image.resize(
(int(pil_image.width * ratio), int(pil_image.height * ratio))
)
img_path = os.path.join(request_temp_folder, f"{i}.jpg")
if pil_image.mode in ("RGBA", "LA") or (
pil_image.mode == "P" and "transparency" in pil_image.info
):
pil_image = pil_image.convert("RGBA")
if pil_image.getchannel("A").getextrema() == (
255,
255,
): # if fully opaque, save as JPEG
pil_image = pil_image.convert("RGB")
image_format = "JPEG"
else:
image_format = "PNG"
else:
image_format = "JPEG"
pil_image.save(img_path, image_format, quality=100, subsampling=0)
img_paths.append(img_path)
# mapping
if ai_model in settings.OPENAI_MODELS:
ai_vendor = "openai"
elif ai_model in settings.ANTHROPIC_MODELS:
ai_vendor = "anthropic"
elif ai_model in settings.GEMINI_MODELS:
ai_vendor = "gemini"
service = AIServiceFactory.get_service(ai_vendor)
try:
json_attributes = await service.extract_attributes_with_validation(
attributes_object, # type: ignore
ai_model,
None,
product_taxonomy,
product_data_object, # type: ignore
img_paths=img_paths,
)
except:
raise gr.Error("Failed to extract attributes. Something went wrong.")
finally:
# remove temp folder anyway
shutil.rmtree(request_temp_folder)
gr.Info("Process completed!")
return json_attributes
def add_attribute_schema(attributes, attr_name, attr_desc, attr_type, allowed_values):
schema = f"""
"{attr_name}": {{
"description": "{attr_desc}",
"data_type": "{attr_type}",
"allowed_values": [
{', '.join([f'"{v.strip()}"' for v in allowed_values.split(',')]) if allowed_values != "" else ""}
]
}},
"""
return attributes + schema, "", "", "", ""
sample_schema = """"category": {
"description": "Category of the garment",
"data_type": "list[string]",
"allowed_values": [
"upper garment", "lower garment", "footwear", "accessory", "headwear", "dresses"
]
},
"color": {
"description": "Color of the garment",
"data_type": "list[string]",
"allowed_values": [
"black", "white", "red", "blue", "green", "yellow", "pink", "purple", "orange", "brown", "grey", "beige", "multi-color", "other"
]
},
"pattern": {
"description": "Pattern of the garment",
"data_type": "list[string]",
"allowed_values": [
"plain", "striped", "checkered", "floral", "polka dot", "camouflage", "animal print", "abstract", "other"
]
},
"material": {
"description": "Material of the garment",
"data_type": "string",
"allowed_values": []
}
"""
description = """
This is a simple demo for Attribution. Follow the steps below:
1. Upload image(s) of a product.
2. Enter the product taxonomy (e.g. 'upper garment', 'lower garment', 'bag'). If only one product is in the image, you can leave this field empty.
3. Select the AI model to use.
4. Enter known attributes (optional).
5. Enter the attribute schema or use the "Add Attributes" section to add attributes.
6. Click "Extract Attributes" to get the extracted attributes.
"""
product_data_placeholder = """Example:
{
"brand": "Leaf",
"size": "M",
"product_name": "Leaf T-shirt",
"color": "red"
}
"""
product_data_value = """
{
"data1": "",
"data2": ""
}
"""
with gr.Blocks(title="Internal Demo for Attribution") as demo:
with gr.Row():
with gr.Column(scale=12):
gr.Markdown(
"""<div style="text-align: center; font-size: 24px;"><strong>Internal Demo for Attribution</strong></div>"""
)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=12):
with gr.Row():
with gr.Column():
gallery = gr.Gallery(
label="Upload images of your product here", type="pil"
)
product_taxnomy = gr.Textbox(
label="Product Taxonomy",
placeholder="Enter product taxonomy here (e.g. 'upper garment', 'lower garment', 'bag')",
lines=1,
max_lines=1,
)
ai_model = gr.Dropdown(
label="AI Model",
choices=settings.SUPPORTED_MODELS,
interactive=True,
)
product_data = gr.TextArea(
label="Product Data (Optional)",
placeholder=product_data_placeholder,
value=product_data_value.strip(),
interactive=True,
lines=10,
max_lines=10,
)
# track_count = gr.State(1)
# @gr.render(inputs=track_count)
# def render_tracks(count):
# ka_names = []
# ka_values = []
# with gr.Column():
# for i in range(count):
# with gr.Column(variant="panel"):
# with gr.Row():
# ka_name = gr.Textbox(placeholder="key", key=f"key-{i}", show_label=False)
# ka_value = gr.Textbox(placeholder="data", key=f"data-{i}", show_label=False)
# ka_names.append(ka_name)
# ka_values.append(ka_value)
# add_track_btn = gr.Button("Add Product Data")
# remove_track_btn = gr.Button("Remove Product Data")
# add_track_btn.click(lambda count: count + 1, track_count, track_count)
# remove_track_btn.click(lambda count: count - 1, track_count, track_count)
with gr.Column():
attributes = gr.TextArea(
label="Attribute Schema",
value=sample_schema,
placeholder="Enter schema here or use Add Attributes below",
interactive=True,
lines=30,
max_lines=30,
)
with gr.Accordion("Add Attributes", open=False):
attr_name = gr.Textbox(
label="Attribute name", placeholder="Enter attribute name"
)
attr_desc = gr.Textbox(
label="Description", placeholder="Enter description"
)
attr_type = gr.Dropdown(
label="Type",
choices=[
"string",
"list[string]",
"int",
"list[int]",
"float",
"list[float]",
"bool",
"list[bool]",
],
interactive=True,
)
allowed_values = gr.Textbox(
label="Allowed values (separated by comma)",
placeholder="yellow, red, blue",
)
add_btn = gr.Button("Add Attribute")
with gr.Row():
submit_btn = gr.Button("Extract Attributes")
with gr.Column(scale=6):
output_json = gr.Json(
label="Extracted Attributes", value={}, show_indices=False
)
add_btn.click(
add_attribute_schema,
inputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
outputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
)
submit_btn.click(
forward_request,
inputs=[attributes, product_taxnomy, product_data, ai_model, gallery],
outputs=output_json,
)
attr_user = os.getenv("ATTR_USER", "1")
attr_pass = os.getenv("ATTR_PASS", "a")
auth = (attr_user, attr_pass)
demo.launch(auth=auth, debug=True, ssr_mode=False)