File size: 7,203 Bytes
182160d
1b3bfe1
 
 
 
 
182160d
 
 
 
 
 
 
8a158c4
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
93e7fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
182160d
 
3d2ef38
1b3bfe1
 
 
 
 
 
 
 
 
 
182160d
 
 
3d2ef38
182160d
 
 
 
 
 
 
1b3bfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345f27
182160d
28d4a17
182160d
3d2ef38
182160d
 
 
1b3bfe1
 
182160d
 
3d2ef38
7f84964
182160d
 
 
3d2ef38
3ea980f
2345f27
3ea980f
5cce4fd
66ffcbf
2345f27
 
247a0af
1b3bfe1
2345f27
 
182160d
 
 
 
 
 
 
 
 
 
 
 
 
17d17f1
 
182160d
 
 
 
 
 
 
 
 
 
 
1b3bfe1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import io
import contextlib
import pandas as pd # Added for Excel file handling
from typing import Dict, List, Union # Added for type hinting

from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second; error if divisor is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder of dividing first integer by second."""
    return a % b

@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia for a query and return up to 2 documents."""
    try:
        docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load() # Added lang="en" for clarity
        if not docs:
            return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}' # Added .get for safety
            for d in docs
        )
        return {"wiki_results": formatted}
    except Exception as e:
        # Log the full error for debugging if possible
        print(f"Error in wiki_search tool: {e}")
        return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}

@tool
def web_search(query: str) -> dict:
    """Perform a web search (via Tavily) and return up to 3 results."""
    try: # Added try-except block for robustness
        docs = TavilySearchResults(max_results=3).invoke(query=query)
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
            for d in docs
        )
        return {"web_results": formatted}
    except Exception as e:
        print(f"Error in web_search tool: {e}")
        return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"}

@tool
def arvix_search(query: str) -> dict:
    """Search arXiv for a query and return up to 3 paper excerpts."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
        for d in docs
    )
    return {"arvix_results": formatted}

@tool
def read_file_content(file_path: str) -> Dict[str, str]:
    """
    Reads the content of a file and returns it.
    Supports text (.txt), Python (.py), and Excel (.xlsx) files.
    For other file types, returns a message indicating limited support.
    """
    try:
        _, file_extension = os.path.splitext(file_path)
        content = ""
        if file_extension.lower() in (".txt", ".py"):
            with open(file_path, "r", encoding="utf-8") as f:
                content = f.read()
        elif file_extension.lower() == ".xlsx":
             # Ensure pandas is installed for this.
             df = pd.read_excel(file_path)
             content = df.to_string() # Convert Excel to string representation
        elif file_extension.lower() == ".mp3":
            content = "Audio file provided. Unable to directly process audio. Consider using a transcription service if available."
        elif file_extension.lower() == ".png":
            content = "Image file provided. Unable to directly process images. Consider using an OCR or image analysis service if available."
        else:
            content = f"Unsupported file type: {file_extension}. Only .txt, .py, and .xlsx files are fully supported for reading content."
        return {"file_content": content, "file_name": file_path}
    except FileNotFoundError:
        return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
    except Exception as e:
        return {"file_error": f"Error reading file {file_path}: {e}"}

@tool
def python_interpreter(code: str) -> Dict[str, str]:
    """
    Executes Python code and returns its standard output.
    If there's an error during execution, it returns the error message.
    """
    old_stdout = io.StringIO()
    # Redirect stdout to capture print statements
    with contextlib.redirect_stdout(old_stdout):
        try:
            # Create a dictionary to hold the execution scope for exec
            exec_globals = {}
            exec_locals = {}
            exec(code, exec_globals, exec_locals)
            output = old_stdout.getvalue()
            return {"execution_result": output.strip()}
        except Exception as e:
            return {"execution_error": str(e)}


API_KEY = os.getenv("GEMINI_API_KEY")
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")


tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search,
    read_file_content, # Added new tool
    python_interpreter, # Added new tool
]


with open("prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)


def build_graph(provider: str = "gemini"):
    """Build the LangGraph agent with chosen LLM (default: Gemini)."""
    if provider == "gemini":
        llm = ChatGoogleGenerativeAI(
        model= "gemini-2.5-flash-preview-05-20",
        temperature=1.0,
        max_retries=2,
        api_key=GEMINI_API_KEY,
        max_tokens=5000
)

    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            ),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        messages_to_send = [sys_msg] + state["messages"]
        return {"messages": [llm_with_tools.invoke(messages_to_send)]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    # This block is intentionally left empty as per user request to remove examples.
    # Your agent will interact with the graph by invoking it with messages.
    pass