File size: 7,499 Bytes
e4b659c
 
 
 
 
 
 
514b444
 
e4b659c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514b444
e4b659c
 
514b444
e4b659c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514b444
e4b659c
 
 
 
 
 
 
 
 
 
 
 
 
514b444
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
import re

from PIL import Image as PILImage  # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed.
from huggingface_hub import InferenceClient  # Keep InferenceClient for other potential HF uses, but describe_image is removed.

from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_google_community import GoogleSearchAPIWrapper

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second; error if divisor is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder of dividing first integer by second."""
    return a % b

@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia for a query and return up to 2 documents."""
    try:
        docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load()
        if not docs:
            return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
            for d in docs
        )
        return {"wiki_results": formatted}
    except Exception as e:
        print(f"Error in wiki_search tool: {e}")
        return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}

search = GoogleSearchAPIWrapper()

@tool
def google_web_search(query: str) -> str:
    """Perform a web search (via Google Custom Search) and return results."""
    try:
        return search.run(query)
    except Exception as e:
        print(f"Error in google_web_search tool: {e}")
        return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"


HF_API_TOKEN = os.getenv("HF_API_TOKEN")
MODEL = os.getenv("MODEL")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
    HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
    print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.")

@tool
def read_file_content(file_path: str) -> Dict[str, str]:
    """Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing."""
    try:
        _, file_extension = os.path.splitext(file_path)
        file_extension = file_extension.lower()

        # Prioritize handling of video, audio, and image files for direct LLM processing
        if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"):
            return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."}
        elif file_extension == ".mp3":
            return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."}
        elif file_extension in (".jpeg", ".jpg", ".png"):
            return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."}
        
        # Handle text and code files
        elif file_extension in (".txt", ".py"):
            with open(file_path, "r", encoding="utf-8") as f:
                content = f.read()
            return {"file_type": "text/code", "file_name": file_path, "file_content": content}
        
        # Handle Excel files
        elif file_extension == ".xlsx":
            df = pd.read_excel(file_path)
            content = df.to_string()
            return {"file_type": "excel", "file_name": file_path, "file_content": content}
        
        else:
            return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."}
    
    except FileNotFoundError:
        return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
    except Exception as e:
        return {"file_error": f"Error reading file {file_path}: {e}"}


@tool
def python_interpreter(code: str) -> Dict[str, str]:
    """Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
    old_stdout = io.StringIO()
    with contextlib.redirect_stdout(old_stdout):
        try:
            exec_globals = {}
            exec_locals = {}
            exec(code, exec_globals, exec_locals)
            output = old_stdout.getvalue()
            return {"execution_result": output.strip()}
        except Exception as e:
            return {"execution_error": str(e)}

API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN")  # Kept for potential future HF uses, but not for describe_image
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

# Updated tools list without Youtube
tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search,
    google_web_search,
    read_file_content,
    python_interpreter,
]

with open("prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)

def build_graph(provider: str = "gemini"):
    if provider == "gemini":
        llm = ChatGoogleGenerativeAI(
            model=MODEL,
            temperature=1.0,
            max_retries=2,
            api_key=GEMINI_API_KEY,
            max_tokens=5000
        )
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            ),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        messages_to_send = [sys_msg] + state["messages"]

        llm_response = llm_with_tools.invoke(messages_to_send, {"recursion_limit": 25})
        print(f"LLM Raw Response: {llm_response}")
        return {"messages": [llm_response]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    pass