File size: 12,531 Bytes
e4b659c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
import re
from PIL import Image as PILImage # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed.
from huggingface_hub import InferenceClient # Keep InferenceClient for other potential HF uses, but describe_image is removed.
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
"""Perform a web search (via Google Custom Search) and return results."""
try:
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
# HF_API_TOKEN is no longer directly needed for describe_image as that tool is removed.
# But keeping InferenceClient initialization for completeness if other HF tools might be added later.
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
MODEL = os.getenv("MODEL")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing."""
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
# Prioritize handling of video, audio, and image files for direct LLM processing
if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"):
return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."}
elif file_extension == ".mp3":
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."}
# Handle text and code files
elif file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
# Handle Excel files
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
# --- Youtube Tool (Remains the same) ---
@tool
def Youtube(url: str, question: str) -> Dict[str, str]:
"""
Tells about the YouTube video identified by the given URL, answering a question about it.
Note: This is a simulated response. In a real application, this would interact with a YouTube API
or a video analysis service to get actual video information and transcripts.
"""
print(f"Youtube called with URL: {url}, Question: {question}")
# Placeholder for actual YouTube API call.
# In a real scenario, you'd use a library like `google-api-python-client` for YouTube Data API
# or a dedicated video transcription/analysis service.
# Simulating the previous video content for demonstration
if "https://www.youtube.com/watch?v=1htKBjuUWec" in url or re.search(r'youtube\.com/watch\?v=|youtu\.be/', url):
return {
"video_url": url,
"question_asked": question,
"video_summary": "The video titled 'Teal'c coffee first time' shows a scene where several individuals are reacting to a beverage, presumably coffee, that Teal'c is trying for the first time. Key moments include: A person off-screen remarking, 'Wow this coffee's great'; another asking if it's 'cinnamon chicory tea oak'; and Teal'c reacting strongly to the taste or temperature, stating 'isn't that hot' indicating he finds it very warm.",
"details": {
"00:00:00": "Someone remarks, 'Wow this coffee's great I was just thinking that yeah is that cinnamon chicory tea oak'",
"00:00:11": "Teal'c takes a large gulp from a black mug",
"00:00:24": "Teal'c reacts strongly, someone asks 'isn't that hot'",
"00:00:26": "Someone agrees, 'extremely'"
}
}
else:
return {"error": "Invalid or unrecognized YouTube URL.", "url": url}
# --- END YOUTUBE TOOL ---
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") # Kept for potential future HF uses, but not for describe_image
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Update the tools list (removed describe_image and arvix_search)
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
read_file_content,
python_interpreter,
Youtube,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model=MODEL,
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
# --- IMPORTANT NOTE ON HANDLING BINARY BLOB DATA FOR MULTIMODAL LLMs ---
# When read_file_content returns a file_type of "image" or "audio",
# the agent should be able to send the actual binary data of that file
# as part of the message to the LLM. LangChain's ChatGoogleGenerativeAI
# supports this via content parts in HumanMessage.
#
# For this setup, we're assuming the framework (LangGraph/LangChain)
# will correctly handle passing the actual file content when read_file_content
# is called and its output indicates a media type.
#
# A more explicit implementation in the assistant node might look like this
# for real binary file handling if the framework doesn't do it implicitly:
#
# new_messages_to_send = []
# for msg in state["messages"]:
# if isinstance(msg, HumanMessage) and msg.tool_calls:
# # If a tool call to read_file_content happened in the previous turn
# # and it returned a media type, we might need to get the file data
# # and append it to the message parts. This logic is complex and
# # depends heavily on how tool outputs are structured and passed.
# # For simplicity in this template, we assume direct handling by the LLM
# # if the tool output indicates media, and the file itself is accessible
# # via the environment.
# pass # Keep original message, tool output will follow
# elif isinstance(msg, HumanMessage) and any(part.get("file_type") in ["image", "audio"] for part in msg.content if isinstance(part, dict)):
# # This is a conceptual example for if the HumanMessage itself contains file data
# # or a reference that needs to be resolved into data.
# # You'd need to load the actual file bytes here.
# # e.g., if msg.content was like: [{"type": "file_reference", "file_path": "image.png"}]
# # with open(msg.content[0]["file_path"], "rb") as f:
# # file_bytes = f.read()
# # new_messages_to_send.append(
# # HumanMessage(
# # content=[
# # {"type": "text", "text": "Here is the media content:"},
# # {"type": "image_data" if "image" in msg.content[0]["file_type"] else "audio_data", "data": base64.b64encode(file_bytes).decode('utf-8'), "media_type": "image/png" if "image" in msg.content[0]["file_type"] else "audio/mp3"}
# # ]
# # )
# # )
# else:
# new_messages_to_send.append(msg)
# llm_response = llm_with_tools.invoke([sys_msg] + new_messages_to_send)
# --- END IMPORTANT NOTE ---
llm_response = llm_with_tools.invoke(messages_to_send,{"recursion_limit": 25}) # For now, keep as is, rely on framework
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass |