Final_Assignment_Template / langgraph_agent.py
philincloud's picture
Update langgraph_agent.py
270289d verified
raw
history blame
7.76 kB
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
from PIL import Image as PILImage
from huggingface_hub import InferenceClient
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
# Correct import for GoogleSearchAPIWrapper
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def wiki_search(query: str) -> dict:
try:
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
# Instantiate GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
try:
# Use the run method of the GoogleSearchAPIWrapper instance
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
@tool
def arvix_search(query: str) -> dict:
docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
for d in docs
)
return {"arvix_results": formatted}
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
if file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
elif file_extension == ".mp3":
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
@tool
def describe_image(image_path: str) -> Dict[str, str]:
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
return {"image_description": description, "image_path": image_path}
except FileNotFoundError:
return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error describing image {image_path}: {str(e)}"}
@tool
def transcribe_audio(audio_path: str) -> Dict[str, str]:
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."}
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes)
return {"audio_transcription": transcription, "audio_path": audio_path}
except FileNotFoundError:
return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error transcribing audio {audio_path}: {str(e)}"}
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
arvix_search,
read_file_content,
python_interpreter,
describe_image,
transcribe_audio,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-pro-preview-05-06",
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
llm_response = llm_with_tools.invoke(messages_to_send)
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass