File size: 7,759 Bytes
182160d
1b3bfe1
 
2ea78f5
 
 
f33e43c
2ea78f5
182160d
 
 
 
 
 
8a158c4
182160d
 
3603cca
 
f33e43c
182160d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e7fe0
2ea78f5
93e7fe0
 
 
2ea78f5
93e7fe0
 
 
 
 
 
 
3603cca
 
 
182160d
3603cca
2ea78f5
3603cca
 
1b3bfe1
f33e43c
3603cca
182160d
 
 
 
 
 
 
 
 
 
2ea78f5
 
 
 
 
830a3ef
2ea78f5
1b3bfe1
 
 
 
2ea78f5
 
 
1b3bfe1
 
2ea78f5
 
f33e43c
 
 
2ea78f5
 
 
830a3ef
1b3bfe1
2ea78f5
1b3bfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ea78f5
 
 
 
 
 
 
 
 
 
 
 
 
 
f33e43c
 
 
 
 
 
 
 
 
 
 
 
 
1b3bfe1
2345f27
d97a423
28d4a17
182160d
 
 
f33e43c
 
 
2ea78f5
 
830a3ef
f33e43c
182160d
 
7f84964
182160d
 
 
3ea980f
 
5cce4fd
f33e43c
 
 
 
 
 
182160d
 
 
 
 
 
 
 
2ea78f5
182160d
 
 
 
3603cca
 
 
 
182160d
 
 
 
 
 
 
 
 
 
 
f33e43c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union

from PIL import Image as PILImage
from huggingface_hub import InferenceClient
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool

# Correct import for GoogleSearchAPIWrapper
from langchain_google_community import GoogleSearchAPIWrapper

@tool
def multiply(a: int, b: int) -> int:
    return a * b

@tool
def add(a: int, b: int) -> int:
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    return a - b

@tool
def divide(a: int, b: int) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    return a % b

@tool
def wiki_search(query: str) -> dict:
    try:
        docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
        if not docs:
            return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
            for d in docs
        )
        return {"wiki_results": formatted}
    except Exception as e:
        print(f"Error in wiki_search tool: {e}")
        return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}

# Instantiate GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()

@tool
def google_web_search(query: str) -> str:
    try:
        # Use the run method of the GoogleSearchAPIWrapper instance
        return search.run(query)
    except Exception as e:
        print(f"Error in google_web_search tool: {e}")
        return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"

@tool
def arvix_search(query: str) -> dict:
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
        for d in docs
    )
    return {"arvix_results": formatted}

HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
    HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
    print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")

@tool
def read_file_content(file_path: str) -> Dict[str, str]:
    try:
        _, file_extension = os.path.splitext(file_path)
        file_extension = file_extension.lower()

        if file_extension in (".txt", ".py"):
            with open(file_path, "r", encoding="utf-8") as f:
                content = f.read()
            return {"file_type": "text/code", "file_name": file_path, "file_content": content}
        elif file_extension == ".xlsx":
            df = pd.read_excel(file_path)
            content = df.to_string()
            return {"file_type": "excel", "file_name": file_path, "file_content": content}
        elif file_extension in (".jpeg", ".jpg", ".png"):
            return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
        elif file_extension == ".mp3":
            return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."}
        else:
            return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
    except FileNotFoundError:
        return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
    except Exception as e:
        return {"file_error": f"Error reading file {file_path}: {e}"}

@tool
def python_interpreter(code: str) -> Dict[str, str]:
    old_stdout = io.StringIO()
    with contextlib.redirect_stdout(old_stdout):
        try:
            exec_globals = {}
            exec_locals = {}
            exec(code, exec_globals, exec_locals)
            output = old_stdout.getvalue()
            return {"execution_result": output.strip()}
        except Exception as e:
            return {"execution_error": str(e)}

@tool
def describe_image(image_path: str) -> Dict[str, str]:
    if not HF_INFERENCE_CLIENT:
        return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
    try:
        with open(image_path, "rb") as f:
            image_bytes = f.read()
        description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
        return {"image_description": description, "image_path": image_path}
    except FileNotFoundError:
        return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
    except Exception as e:
        return {"error": f"Error describing image {image_path}: {str(e)}"}

@tool
def transcribe_audio(audio_path: str) -> Dict[str, str]:
    if not HF_INFERENCE_CLIENT:
        return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."}
    try:
        with open(audio_path, "rb") as f:
            audio_bytes = f.read()
        transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes)
        return {"audio_transcription": transcription, "audio_path": audio_path}
    except FileNotFoundError:
        return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."}
    except Exception as e:
        return {"error": f"Error transcribing audio {audio_path}: {str(e)}"}

API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search,
    google_web_search,
    arvix_search,
    read_file_content,
    python_interpreter,
    describe_image,
    transcribe_audio,
]

with open("prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)

def build_graph(provider: str = "gemini"):
    if provider == "gemini":
        llm = ChatGoogleGenerativeAI(
            model="gemini-2.5-pro-preview-05-06",
            temperature=1.0,
            max_retries=2,
            api_key=GEMINI_API_KEY,
            max_tokens=5000
        )
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            ),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        messages_to_send = [sys_msg] + state["messages"]
        llm_response = llm_with_tools.invoke(messages_to_send)
        print(f"LLM Raw Response: {llm_response}")
        return {"messages": [llm_response]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    pass