File size: 7,759 Bytes
182160d 1b3bfe1 2ea78f5 f33e43c 2ea78f5 182160d 8a158c4 182160d 3603cca f33e43c 182160d 93e7fe0 2ea78f5 93e7fe0 2ea78f5 93e7fe0 3603cca 182160d 3603cca 2ea78f5 3603cca 1b3bfe1 f33e43c 3603cca 182160d 2ea78f5 830a3ef 2ea78f5 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 f33e43c 2ea78f5 830a3ef 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 f33e43c 1b3bfe1 2345f27 d97a423 28d4a17 182160d f33e43c 2ea78f5 830a3ef f33e43c 182160d 7f84964 182160d 3ea980f 5cce4fd f33e43c 182160d 2ea78f5 182160d 3603cca 182160d f33e43c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
from PIL import Image as PILImage
from huggingface_hub import InferenceClient
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
# Correct import for GoogleSearchAPIWrapper
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def wiki_search(query: str) -> dict:
try:
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
# Instantiate GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
try:
# Use the run method of the GoogleSearchAPIWrapper instance
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
@tool
def arvix_search(query: str) -> dict:
docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
for d in docs
)
return {"arvix_results": formatted}
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
if file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
elif file_extension == ".mp3":
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
@tool
def describe_image(image_path: str) -> Dict[str, str]:
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
return {"image_description": description, "image_path": image_path}
except FileNotFoundError:
return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error describing image {image_path}: {str(e)}"}
@tool
def transcribe_audio(audio_path: str) -> Dict[str, str]:
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."}
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes)
return {"audio_transcription": transcription, "audio_path": audio_path}
except FileNotFoundError:
return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error transcribing audio {audio_path}: {str(e)}"}
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
arvix_search,
read_file_content,
python_interpreter,
describe_image,
transcribe_audio,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-pro-preview-05-06",
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
llm_response = llm_with_tools.invoke(messages_to_send)
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass |