pixe-4 / app.py
phxdev's picture
Update app.py
b97bb7f verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL, StableDiffusionUpscalePipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download
import os
import requests
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
# Performance optimizations
if hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing(1)
if hasattr(pipe, "enable_vae_slicing"):
pipe.enable_vae_slicing()
if hasattr(pipe, "enable_vae_tiling"):
pipe.enable_vae_tiling()
# Compile transformer for faster inference (if supported)
try:
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
print("✓ Transformer compiled for faster inference")
except Exception as e:
print(f"Warning: Could not compile transformer: {e}")
# Load upscaler pipeline with optimizations
upscaler = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=dtype).to(device)
if hasattr(upscaler, "enable_attention_slicing"):
upscaler.enable_attention_slicing(1)
if hasattr(upscaler, "enable_vae_slicing"):
upscaler.enable_vae_slicing()
# Available LoRAs
LORAS = {
"None": None,
"AntiBlur": "Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur",
"Add Details": "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"Ultra Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-UltraRealism.safetensors",
"Face Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-FaceRealism.safetensors",
"Perfectionism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/perfection%20style%20v1.safetensors"
}
# Store loaded LoRA paths
loaded_loras = {}
def download_lora_from_url(url, filename):
"""Download LoRA file from direct URL"""
if not os.path.exists(filename):
print(f"Downloading {filename}...")
response = requests.get(url)
with open(filename, 'wb') as f:
f.write(response.content)
print(f"Downloaded {filename}")
return filename
def preload_and_apply_all_loras():
"""Download and apply all LoRAs simultaneously at startup"""
global loaded_loras
print("Downloading and applying all LoRAs...")
for lora_name, lora_path in LORAS.items():
if lora_name == "None" or lora_path is None:
continue
# Handle direct URL downloads
if lora_path.startswith('http'):
filename = f"{lora_name.lower().replace(' ', '_')}_lora.safetensors"
lora_path = download_lora_from_url(lora_path, filename)
loaded_loras[lora_name] = lora_path
print(f"Downloaded {lora_name}")
# Apply each LoRA with optimal scaling
try:
optimal_scale = get_optimal_lora_scale(lora_name)
pipe.load_lora_weights(lora_path, adapter_name=lora_name.lower().replace(' ', '_'))
print(f"Applied {lora_name} with scale {optimal_scale}")
except Exception as e:
print(f"Failed to apply {lora_name}: {e}")
print(f"All {len(loaded_loras)} LoRAs downloaded and applied!")
def get_optimal_lora_scale(lora_name):
"""Return optimal LoRA scale based on LoRA type for better quality/speed balance"""
lora_scales = {
"AntiBlur": 0.8, # Slightly lower for better balance
"Add Details": 1.2, # Higher for more detail enhancement
"Ultra Realism": 0.9, # Balanced for realism
"Face Realism": 1.1, # Optimized for facial features
}
return lora_scales.get(lora_name, 1.0)
# Download and apply all LoRAs at startup
preload_and_apply_all_loras()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, enable_upscale=False, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# All LoRAs are already loaded and active
try:
final_img = None
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
final_img = img
yield img, seed
# Apply upscaling if enabled with optimized settings
if enable_upscale and final_img is not None:
try:
# Use fewer steps for faster upscaling with minimal quality loss
upscaled_img = upscaler(
prompt=prompt,
image=final_img,
num_inference_steps=15, # Reduced from 20 for speed
guidance_scale=6.0, # Slightly lower for faster convergence
generator=generator,
).images[0]
yield upscaled_img, seed
except Exception as e:
print(f"Error during upscaling: {e}")
yield final_img, seed
except Exception as e:
print(f"Error during generation: {e}")
# Fallback to basic generation
img = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Apply upscaling if enabled
if enable_upscale:
try:
img = upscaler(
prompt=prompt,
image=img,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
).images[0]
except Exception as e:
print(f"Error during upscaling: {e}")
yield img, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown("**LoRAs Active:** All LoRAs are loaded and active simultaneously")
enable_upscale = gr.Checkbox(
label="Enable 4x Upscaling",
value=False,
info="Upscale final image using Stable Diffusion 4x upscaler"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
info="Lower values = faster generation, higher values = more prompt adherence"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=50,
step=1,
value=20,
info="Lower values = faster generation, higher values = better quality"
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, enable_upscale],
outputs = [result, seed]
)
demo.launch(share=True)