|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL, StableDiffusionUpscalePipeline |
|
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast |
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images |
|
from huggingface_hub import hf_hub_download |
|
import os |
|
import requests |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) |
|
|
|
|
|
|
|
if hasattr(pipe, "enable_attention_slicing"): |
|
pipe.enable_attention_slicing(1) |
|
if hasattr(pipe, "enable_vae_slicing"): |
|
pipe.enable_vae_slicing() |
|
if hasattr(pipe, "enable_vae_tiling"): |
|
pipe.enable_vae_tiling() |
|
|
|
|
|
try: |
|
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) |
|
print("✓ Transformer compiled for faster inference") |
|
except Exception as e: |
|
print(f"Warning: Could not compile transformer: {e}") |
|
|
|
|
|
upscaler = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=dtype).to(device) |
|
|
|
if hasattr(upscaler, "enable_attention_slicing"): |
|
upscaler.enable_attention_slicing(1) |
|
if hasattr(upscaler, "enable_vae_slicing"): |
|
upscaler.enable_vae_slicing() |
|
|
|
|
|
LORAS = { |
|
"None": None, |
|
"AntiBlur": "Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur", |
|
"Add Details": "Shakker-Labs/FLUX.1-dev-LoRA-add-details", |
|
"Ultra Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-UltraRealism.safetensors", |
|
"Face Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-FaceRealism.safetensors", |
|
"Perfectionism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/perfection%20style%20v1.safetensors" |
|
} |
|
|
|
|
|
loaded_loras = {} |
|
|
|
def download_lora_from_url(url, filename): |
|
"""Download LoRA file from direct URL""" |
|
if not os.path.exists(filename): |
|
print(f"Downloading {filename}...") |
|
response = requests.get(url) |
|
with open(filename, 'wb') as f: |
|
f.write(response.content) |
|
print(f"Downloaded {filename}") |
|
return filename |
|
|
|
def preload_and_apply_all_loras(): |
|
"""Download and apply all LoRAs simultaneously at startup""" |
|
global loaded_loras |
|
|
|
print("Downloading and applying all LoRAs...") |
|
|
|
for lora_name, lora_path in LORAS.items(): |
|
if lora_name == "None" or lora_path is None: |
|
continue |
|
|
|
|
|
if lora_path.startswith('http'): |
|
filename = f"{lora_name.lower().replace(' ', '_')}_lora.safetensors" |
|
lora_path = download_lora_from_url(lora_path, filename) |
|
|
|
loaded_loras[lora_name] = lora_path |
|
print(f"Downloaded {lora_name}") |
|
|
|
|
|
try: |
|
optimal_scale = get_optimal_lora_scale(lora_name) |
|
pipe.load_lora_weights(lora_path, adapter_name=lora_name.lower().replace(' ', '_')) |
|
print(f"Applied {lora_name} with scale {optimal_scale}") |
|
except Exception as e: |
|
print(f"Failed to apply {lora_name}: {e}") |
|
|
|
print(f"All {len(loaded_loras)} LoRAs downloaded and applied!") |
|
|
|
def get_optimal_lora_scale(lora_name): |
|
"""Return optimal LoRA scale based on LoRA type for better quality/speed balance""" |
|
lora_scales = { |
|
"AntiBlur": 0.8, |
|
"Add Details": 1.2, |
|
"Ultra Realism": 0.9, |
|
"Face Realism": 1.1, |
|
} |
|
return lora_scales.get(lora_name, 1.0) |
|
|
|
|
|
preload_and_apply_all_loras() |
|
|
|
torch.cuda.empty_cache() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
@spaces.GPU(duration=75) |
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, enable_upscale=False, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
|
|
try: |
|
final_img = None |
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
final_img = img |
|
yield img, seed |
|
|
|
|
|
if enable_upscale and final_img is not None: |
|
try: |
|
|
|
upscaled_img = upscaler( |
|
prompt=prompt, |
|
image=final_img, |
|
num_inference_steps=15, |
|
guidance_scale=6.0, |
|
generator=generator, |
|
).images[0] |
|
yield upscaled_img, seed |
|
except Exception as e: |
|
print(f"Error during upscaling: {e}") |
|
yield final_img, seed |
|
|
|
except Exception as e: |
|
print(f"Error during generation: {e}") |
|
|
|
img = pipe( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
|
|
if enable_upscale: |
|
try: |
|
img = upscaler( |
|
prompt=prompt, |
|
image=img, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
).images[0] |
|
except Exception as e: |
|
print(f"Error during upscaling: {e}") |
|
|
|
yield img, seed |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 [dev] |
|
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) |
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
gr.Markdown("**LoRAs Active:** All LoRAs are loaded and active simultaneously") |
|
|
|
enable_upscale = gr.Checkbox( |
|
label="Enable 4x Upscaling", |
|
value=False, |
|
info="Upscale final image using Stable Diffusion 4x upscaler" |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
info="Lower values = faster generation, higher values = more prompt adherence" |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=4, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
info="Lower values = faster generation, higher values = better quality" |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, enable_upscale], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch(share=True) |