Files changed (1) hide show
  1. software.py +6 -4
software.py CHANGED
@@ -9,6 +9,7 @@ from scipy.stats import skew, kurtosis, entropy
9
  from tqdm import tqdm
10
  from torch.nn import CrossEntropyLoss
11
  from pathlib import Path
 
12
 
13
  class Diversity:
14
  def __init__(self, model, tokenizer, device):
@@ -102,14 +103,14 @@ class Software:
102
  else:
103
  self.device_bi = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
104
 
105
- self.div_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", use_fast=False, trust_remote_code=True, local_files_only=True)
106
  self.div_model = AutoModelForCausalLM.from_pretrained(
107
- "tiiuae/falcon-7b", device_map=self.device_div, torch_dtype=torch.float16, trust_remote_code=True, local_files_only=True
108
  )
109
 
110
- self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True, local_files_only=True)
111
  self.bi_model = AutoModelForCausalLM.from_pretrained(
112
- "google/gemma-1.1-2b-it", device_map=self.device_bi, torch_dtype=torch.float16, trust_remote_code=True, local_files_only=True
113
  )
114
 
115
  self.diveye = Diversity(self.div_model, self.div_tokenizer, self.device_div)
@@ -128,6 +129,7 @@ class Software:
128
  texts.append(obj["text"])
129
  return ids, texts
130
 
 
131
  def evaluate(self, text):
132
  diveye_features = self.diveye.compute_features(text)
133
  biscope_features = self.biscope.detect_single_sample(text)
 
9
  from tqdm import tqdm
10
  from torch.nn import CrossEntropyLoss
11
  from pathlib import Path
12
+ import spaces
13
 
14
  class Diversity:
15
  def __init__(self, model, tokenizer, device):
 
103
  else:
104
  self.device_bi = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
105
 
106
+ self.div_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", use_fast=False, trust_remote_code=True)
107
  self.div_model = AutoModelForCausalLM.from_pretrained(
108
+ "tiiuae/falcon-7b", device_map=self.device_div, torch_dtype=torch.float16, trust_remote_code=True
109
  )
110
 
111
+ self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True)
112
  self.bi_model = AutoModelForCausalLM.from_pretrained(
113
+ "google/gemma-1.1-2b-it", device_map=self.device_bi, torch_dtype=torch.float16, trust_remote_code=True
114
  )
115
 
116
  self.diveye = Diversity(self.div_model, self.div_tokenizer, self.device_div)
 
129
  texts.append(obj["text"])
130
  return ids, texts
131
 
132
+ @spaces.GPU
133
  def evaluate(self, text):
134
  diveye_features = self.diveye.compute_features(text)
135
  biscope_features = self.biscope.detect_single_sample(text)