pixai-tagger-demo / handler.py
trojblue's picture
update app.py
20d8f48
import base64
import io
import json
import logging
import os
import time
from pathlib import Path
from typing import Any
import requests
import timm
import torch
import torchvision.transforms as transforms
from PIL import Image
class TaggingHead(torch.nn.Module):
def __init__(self, input_dim, num_classes):
super().__init__()
self.input_dim = input_dim
self.num_classes = num_classes
self.head = torch.nn.Sequential(torch.nn.Linear(input_dim, num_classes))
def forward(self, x):
logits = self.head(x)
probs = torch.nn.functional.sigmoid(logits)
return probs
def get_tags(tags_file: Path) -> tuple[dict[str, int], int, int]:
with tags_file.open("r", encoding="utf-8") as f:
tag_info = json.load(f)
tag_map = tag_info["tag_map"]
tag_split = tag_info["tag_split"]
gen_tag_count = tag_split["gen_tag_count"]
character_tag_count = tag_split["character_tag_count"]
return tag_map, gen_tag_count, character_tag_count
def get_character_ip_mapping(mapping_file: Path):
with mapping_file.open("r", encoding="utf-8") as f:
mapping = json.load(f)
return mapping
def get_encoder():
base_model_repo = "hf_hub:SmilingWolf/wd-eva02-large-tagger-v3"
encoder = timm.create_model(base_model_repo, pretrained=False)
encoder.reset_classifier(0)
return encoder
def get_decoder():
decoder = TaggingHead(1024, 13461)
return decoder
def get_model():
encoder = get_encoder()
decoder = get_decoder()
model = torch.nn.Sequential(encoder, decoder)
return model
def load_model(weights_file, device):
model = get_model()
states_dict = torch.load(weights_file, map_location=device, weights_only=True)
model.load_state_dict(states_dict)
model.to(device)
model.eval()
return model
def pure_pil_alpha_to_color_v2(
image: Image.Image, color: tuple[int, int, int] = (255, 255, 255)
) -> Image.Image:
"""
Convert a PIL image with an alpha channel to a RGB image.
This is a workaround for the fact that the model expects a RGB image, but the image may have an alpha channel.
This function will convert the image to a RGB image, and fill the alpha channel with the given color.
The alpha channel is the 4th channel of the image.
"""
image.load() # needed for split()
background = Image.new("RGB", image.size, color)
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
return background
def pil_to_rgb(image: Image.Image) -> Image.Image:
if image.mode == "RGBA":
image = pure_pil_alpha_to_color_v2(image)
elif image.mode == "P":
image = pure_pil_alpha_to_color_v2(image.convert("RGBA"))
else:
image = image.convert("RGB")
return image
class EndpointHandler:
def __init__(self, path: str):
repo_path = Path(path)
assert repo_path.is_dir(), f"Model directory not found: {repo_path}"
weights_file = repo_path / "model_v0.9.pth"
tags_file = repo_path / "tags_v0.9_13k.json"
mapping_file = repo_path / "char_ip_map.json"
if not weights_file.exists():
raise FileNotFoundError(f"Model file not found: {weights_file}")
if not tags_file.exists():
raise FileNotFoundError(f"Tags file not found: {tags_file}")
if not mapping_file.exists():
raise FileNotFoundError(f"Mapping file not found: {mapping_file}")
# Robust device selection: prefer CPU unless CUDA is truly usable
force_cpu = os.environ.get("FORCE_CPU", "0") in {"1", "true", "TRUE", "yes", "on"}
if not force_cpu and torch.cuda.is_available():
try:
# Probe that CUDA can actually be used (driver present)
torch.zeros(1).to("cuda")
self.device = "cuda"
except Exception:
self.device = "cpu"
else:
self.device = "cpu"
self.model = load_model(str(weights_file), self.device)
self.transform = transforms.Compose(
[
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
self.fetch_image_timeout = 5.0
self.default_general_threshold = 0.3
self.default_character_threshold = 0.85
tag_map, self.gen_tag_count, self.character_tag_count = get_tags(tags_file)
# Invert the tag_map for efficient index-to-tag lookups
self.index_to_tag_map = {v: k for k, v in tag_map.items()}
self.character_ip_mapping = get_character_ip_mapping(mapping_file)
def __call__(self, data: dict[str, Any]) -> dict[str, Any]:
inputs = data.pop("inputs", data)
fetch_start_time = time.time()
if isinstance(inputs, Image.Image):
image = inputs
elif image_url := inputs.pop("url", None):
with requests.get(
image_url, stream=True, timeout=self.fetch_image_timeout
) as res:
res.raise_for_status()
image = Image.open(res.raw)
elif image_base64_encoded := inputs.pop("image", None):
image = Image.open(io.BytesIO(base64.b64decode(image_base64_encoded)))
else:
raise ValueError(f"No image or url provided: {data}")
# remove alpha channel if it exists
image = pil_to_rgb(image)
fetch_time = time.time() - fetch_start_time
parameters = data.pop("parameters", {})
general_threshold = parameters.pop(
"general_threshold", self.default_general_threshold
)
character_threshold = parameters.pop(
"character_threshold", self.default_character_threshold
)
# Optional behavior controls
mode = parameters.pop("mode", "threshold") # "threshold" | "topk"
include_scores = bool(parameters.pop("include_scores", False))
topk_general = int(parameters.pop("topk_general", 25))
topk_character = int(parameters.pop("topk_character", 10))
inference_start_time = time.time()
with torch.inference_mode():
# Preprocess image on CPU
image_tensor = self.transform(image).unsqueeze(0)
# Pin memory and use non_blocking transfer only when using CUDA
if self.device == "cuda":
image_tensor = image_tensor.pin_memory().to(self.device, non_blocking=True)
else:
image_tensor = image_tensor.to(self.device)
# Run model on GPU
probs = self.model(image_tensor)[0] # Get probs for the single image
if mode == "topk":
# Select top-k by category, independent of thresholds
gen_slice = probs[: self.gen_tag_count]
char_slice = probs[self.gen_tag_count :]
k_gen = max(0, min(int(topk_general), self.gen_tag_count))
k_char = max(0, min(int(topk_character), self.character_tag_count))
gen_scores, gen_idx = (torch.tensor([]), torch.tensor([], dtype=torch.long))
char_scores, char_idx = (torch.tensor([]), torch.tensor([], dtype=torch.long))
if k_gen > 0:
gen_scores, gen_idx = torch.topk(gen_slice, k_gen)
if k_char > 0:
char_scores, char_idx = torch.topk(char_slice, k_char)
char_idx = char_idx + self.gen_tag_count
# Merge for unified post-processing
combined_indices = torch.cat((gen_idx, char_idx)).cpu()
combined_scores = torch.cat((gen_scores, char_scores)).cpu()
else:
# Perform thresholding directly on the GPU
general_mask = probs[: self.gen_tag_count] > general_threshold
character_mask = probs[self.gen_tag_count :] > character_threshold
# Get the indices of positive tags on the GPU
general_indices = general_mask.nonzero(as_tuple=True)[0]
character_indices = (
character_mask.nonzero(as_tuple=True)[0] + self.gen_tag_count
)
# Combine indices and move the small result tensor to the CPU
combined_indices = torch.cat((general_indices, character_indices)).cpu()
combined_scores = probs[combined_indices].detach().float().cpu()
inference_time = time.time() - inference_start_time
post_process_start_time = time.time()
cur_gen_tags = []
cur_char_tags = []
gen_scores_out: dict[str, float] = {}
char_scores_out: dict[str, float] = {}
# Use the efficient pre-computed map for lookups
for pos, i in enumerate(combined_indices):
idx = int(i.item())
tag = self.index_to_tag_map[idx]
if idx < self.gen_tag_count:
cur_gen_tags.append(tag)
if include_scores:
score = float(combined_scores[pos].item())
gen_scores_out[tag] = score
else:
cur_char_tags.append(tag)
if include_scores:
score = float(combined_scores[pos].item())
char_scores_out[tag] = score
ip_tags = []
for tag in cur_char_tags:
if tag in self.character_ip_mapping:
ip_tags.extend(self.character_ip_mapping[tag])
ip_tags = sorted(set(ip_tags))
post_process_time = time.time() - post_process_start_time
logging.info(
f"Timing - Fetch: {fetch_time:.3f}s, Inference: {inference_time:.3f}s, Post-process: {post_process_time:.3f}s, Total: {fetch_time + inference_time + post_process_time:.3f}s"
)
out: dict[str, Any] = {
"feature": cur_gen_tags,
"character": cur_char_tags,
"ip": ip_tags,
"_timings": {
"fetch_s": round(fetch_time, 4),
"inference_s": round(inference_time, 4),
"post_process_s": round(post_process_time, 4),
"total_s": round(fetch_time + inference_time + post_process_time, 4),
},
"_params": {
"mode": mode,
"general_threshold": general_threshold,
"character_threshold": character_threshold,
"topk_general": topk_general,
"topk_character": topk_character,
},
}
if include_scores:
out["feature_scores"] = gen_scores_out
out["character_scores"] = char_scores_out
return out