voting-ensemble / app.py
namanpenguin's picture
Upload 8 files
b44c3a2 verified
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel
from typing import Optional, Dict, Any, List
import uvicorn
import torch
import logging
import os
import asyncio
import pandas as pd
from datetime import datetime
import shutil
from pathlib import Path
import numpy as np
import sys
# Add parent directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from voting import perform_voting_ensemble, save_predictions
from config import LABEL_COLUMNS, PREDICTIONS_SAVE_DIR
from dataset_utils import load_label_encoders
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="Ensemble Voting API")
# Create necessary directories
UPLOAD_DIR = Path("uploads")
PREDICTIONS_DIR = Path(PREDICTIONS_SAVE_DIR)
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
PREDICTIONS_DIR.mkdir(parents=True, exist_ok=True)
class EnsembleConfig(BaseModel):
model_names: List[str]
weights: Optional[Dict[str, float]] = None
class EnsembleResponse(BaseModel):
message: str
metrics: Dict[str, Any]
predictions: List[Dict[str, Any]]
class PredictionData(BaseModel):
model_name: str
probabilities: List[List[float]]
true_labels: Optional[List[int]] = None
@app.get("/")
async def root():
return {"message": "Ensemble Voting API"}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.post("/ensemble/vote")
async def perform_ensemble(
config: EnsembleConfig
):
"""Perform ensemble voting using specified models"""
try:
# Perform ensemble voting
ensemble_reports, true_labels, ensemble_predictions = perform_voting_ensemble(config.model_names)
# Load label encoders for decoding predictions
label_encoders = load_label_encoders()
# Format predictions with original labels
formatted_predictions = []
for i, (col, preds) in enumerate(zip(LABEL_COLUMNS, ensemble_predictions)):
if true_labels[i] is not None:
label_encoder = label_encoders[col]
true_labels_orig = label_encoder.inverse_transform(true_labels[i])
pred_labels_orig = label_encoder.inverse_transform(preds)
for true, pred in zip(true_labels_orig, pred_labels_orig):
formatted_predictions.append({
"field": col,
"true_label": true,
"predicted_label": pred
})
return EnsembleResponse(
message="Ensemble voting completed successfully",
metrics=ensemble_reports,
predictions=formatted_predictions
)
except Exception as e:
logger.error(f"Ensemble voting failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Ensemble voting failed: {str(e)}")
@app.post("/ensemble/save-predictions")
async def save_model_predictions(
prediction_data: PredictionData
):
"""Save predictions from a model for later ensemble voting"""
try:
# Convert probabilities to numpy arrays
all_probs = [np.array(probs) for probs in prediction_data.probabilities]
true_labels = [np.array(prediction_data.true_labels) if prediction_data.true_labels else None]
# Save predictions
save_predictions(
prediction_data.model_name,
all_probs,
true_labels
)
return {
"message": f"Predictions saved successfully for model {prediction_data.model_name}",
"model_name": prediction_data.model_name
}
except Exception as e:
logger.error(f"Failed to save predictions: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to save predictions: {str(e)}")
@app.get("/ensemble/available-models")
async def get_available_models():
"""Get list of models with saved predictions"""
try:
model_dirs = [d for d in os.listdir(PREDICTIONS_DIR)
if os.path.isdir(os.path.join(PREDICTIONS_DIR, d))]
available_models = []
for model_name in model_dirs:
model_dir = os.path.join(PREDICTIONS_DIR, model_name)
has_all_files = all(
os.path.exists(os.path.join(model_dir, f"{col}_probs.pkl"))
for col in LABEL_COLUMNS
)
if has_all_files:
available_models.append(model_name)
return {
"available_models": available_models,
"total_models": len(available_models)
}
except Exception as e:
logger.error(f"Failed to get available models: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to get available models: {str(e)}")
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7861))
uvicorn.run(app, host="0.0.0.0", port=port)