Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,36 +11,65 @@ import os
|
|
11 |
import re
|
12 |
from typing import List, Optional, Dict, Tuple
|
13 |
import json
|
|
|
14 |
|
15 |
class SmartDocumentRAG:
|
16 |
def __init__(self):
|
17 |
-
print("π Initializing Smart RAG System...")
|
18 |
|
19 |
-
# Initialize embedding model
|
20 |
-
self.embedder = SentenceTransformer('all-
|
21 |
-
print("β
|
22 |
|
23 |
# Initialize quantized LLM
|
24 |
self.setup_llm()
|
25 |
|
26 |
# Document storage
|
27 |
self.documents = []
|
28 |
-
self.document_metadata = []
|
29 |
self.index = None
|
30 |
self.is_indexed = False
|
31 |
self.raw_text = ""
|
32 |
-
self.document_type = "general"
|
33 |
-
self.document_summary = ""
|
|
|
|
|
34 |
|
35 |
def setup_llm(self):
|
36 |
-
"""Setup
|
37 |
try:
|
38 |
-
# Check if CUDA is available
|
39 |
if not torch.cuda.is_available():
|
40 |
print("β οΈ CUDA not available, using CPU-optimized model")
|
41 |
self.setup_cpu_model()
|
42 |
return
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
quantization_config = BitsAndBytesConfig(
|
45 |
load_in_4bit=True,
|
46 |
bnb_4bit_compute_dtype=torch.float16,
|
@@ -50,35 +79,27 @@ class SmartDocumentRAG:
|
|
50 |
|
51 |
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
52 |
|
53 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
54 |
-
model_name,
|
55 |
-
trust_remote_code=True
|
56 |
-
)
|
57 |
-
|
58 |
-
if self.tokenizer.pad_token is None:
|
59 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
60 |
-
|
61 |
self.model = AutoModelForCausalLM.from_pretrained(
|
62 |
model_name,
|
63 |
quantization_config=quantization_config,
|
64 |
device_map="auto",
|
65 |
-
torch_dtype=torch.float16
|
66 |
-
trust_remote_code=True,
|
67 |
-
low_cpu_mem_usage=True
|
68 |
)
|
69 |
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
except Exception as e:
|
73 |
-
print(f"β
|
74 |
-
print("π Falling back to CPU model...")
|
75 |
self.setup_cpu_model()
|
76 |
|
77 |
def setup_cpu_model(self):
|
78 |
"""Setup CPU-friendly model"""
|
79 |
try:
|
80 |
-
#
|
81 |
-
model_name = "gpt2-medium"
|
82 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
84 |
|
@@ -87,87 +108,155 @@ class SmartDocumentRAG:
|
|
87 |
|
88 |
print("β
CPU model loaded")
|
89 |
except Exception as e:
|
90 |
-
print(f"β
|
91 |
self.model = None
|
92 |
self.tokenizer = None
|
93 |
-
print("β οΏ½οΏ½ Using context-only mode")
|
94 |
|
95 |
def detect_document_type(self, text: str) -> str:
|
96 |
-
"""
|
97 |
text_lower = text.lower()
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
scores = {
|
107 |
-
'resume':
|
108 |
-
'research':
|
109 |
-
'business':
|
110 |
-
'technical':
|
111 |
-
'legal': sum(1 for kw in legal_keywords if kw in text_lower)
|
112 |
}
|
113 |
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
def create_document_summary(self, text: str) -> str:
|
117 |
-
"""
|
118 |
try:
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
if
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
if self.
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
try:
|
137 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
138 |
-
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
|
139 |
-
inputs = {k: v.cuda() for k, v in inputs.items()}
|
140 |
-
|
141 |
-
with torch.no_grad():
|
142 |
-
outputs = self.model.generate(
|
143 |
-
**inputs,
|
144 |
-
max_new_tokens=100,
|
145 |
-
temperature=0.7,
|
146 |
-
do_sample=True,
|
147 |
-
top_p=0.9,
|
148 |
-
pad_token_id=self.tokenizer.pad_token_id
|
149 |
-
)
|
150 |
-
|
151 |
-
summary = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
152 |
-
summary = summary.split("Summary:")[-1].strip()
|
153 |
-
|
154 |
-
if len(summary) > 20:
|
155 |
-
return summary
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
print(f"Error generating AI summary: {e}")
|
159 |
-
|
160 |
-
# Fallback: Extract key sentences
|
161 |
-
sentences = re.split(r'[.!?]+', summary_text)
|
162 |
-
key_sentences = [s.strip() for s in sentences if len(s.strip()) > 30][:2]
|
163 |
-
|
164 |
-
return '. '.join(key_sentences) + '.' if key_sentences else "Document contains relevant information."
|
165 |
-
|
166 |
except Exception as e:
|
|
|
167 |
return "Document summary not available."
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def extract_text_from_file(self, file_path: str) -> str:
|
170 |
-
"""
|
171 |
try:
|
172 |
file_extension = os.path.splitext(file_path)[1].lower()
|
173 |
|
@@ -184,7 +273,7 @@ Summary:"""
|
|
184 |
return f"Error reading file: {str(e)}"
|
185 |
|
186 |
def extract_from_pdf(self, file_path: str) -> str:
|
187 |
-
"""Enhanced PDF extraction"""
|
188 |
text = ""
|
189 |
try:
|
190 |
with open(file_path, 'rb') as file:
|
@@ -192,10 +281,12 @@ Summary:"""
|
|
192 |
for page_num, page in enumerate(pdf_reader.pages):
|
193 |
page_text = page.extract_text()
|
194 |
if page_text.strip():
|
195 |
-
|
|
|
|
|
196 |
except Exception as e:
|
197 |
text = f"Error reading PDF: {str(e)}"
|
198 |
-
return text
|
199 |
|
200 |
def extract_from_docx(self, file_path: str) -> str:
|
201 |
"""Enhanced DOCX extraction"""
|
@@ -204,19 +295,22 @@ Summary:"""
|
|
204 |
text = ""
|
205 |
for paragraph in doc.paragraphs:
|
206 |
if paragraph.text.strip():
|
207 |
-
text += paragraph.text + "\n"
|
208 |
-
return text
|
209 |
except Exception as e:
|
210 |
return f"Error reading DOCX: {str(e)}"
|
211 |
|
212 |
def extract_from_txt(self, file_path: str) -> str:
|
213 |
-
"""Enhanced TXT extraction
|
214 |
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
|
215 |
|
216 |
for encoding in encodings:
|
217 |
try:
|
218 |
with open(file_path, 'r', encoding=encoding) as file:
|
219 |
-
|
|
|
|
|
|
|
220 |
except UnicodeDecodeError:
|
221 |
continue
|
222 |
except Exception as e:
|
@@ -224,81 +318,39 @@ Summary:"""
|
|
224 |
|
225 |
return "Error: Could not decode file with any supported encoding"
|
226 |
|
227 |
-
def
|
228 |
-
"""
|
229 |
if not text.strip():
|
230 |
return []
|
231 |
|
232 |
chunks = []
|
233 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
current_chunk = line
|
252 |
-
current_section = line_lower.split()[0] if line_lower.split() else "section"
|
253 |
-
else:
|
254 |
-
current_chunk += "\n" + line
|
255 |
-
|
256 |
-
# Limit chunk size
|
257 |
-
if len(current_chunk.split()) > 200:
|
258 |
-
chunks.append({
|
259 |
-
'text': current_chunk.strip(),
|
260 |
-
'section': current_section,
|
261 |
-
'doc_type': doc_type
|
262 |
-
})
|
263 |
-
current_chunk = ""
|
264 |
-
|
265 |
-
if current_chunk:
|
266 |
-
chunks.append({
|
267 |
-
'text': current_chunk.strip(),
|
268 |
-
'section': current_section,
|
269 |
-
'doc_type': doc_type
|
270 |
-
})
|
271 |
-
|
272 |
-
else:
|
273 |
-
# General intelligent chunking
|
274 |
-
current_chunk = ""
|
275 |
-
sentence_count = 0
|
276 |
-
|
277 |
-
for line in lines:
|
278 |
-
current_chunk += line + "\n"
|
279 |
-
sentence_count += len(re.findall(r'[.!?]+', line))
|
280 |
-
|
281 |
-
# Create chunk based on sentence count or word count
|
282 |
-
if sentence_count >= 5 or len(current_chunk.split()) > 150:
|
283 |
chunks.append({
|
284 |
-
'text':
|
285 |
-
'
|
286 |
-
'doc_type':
|
287 |
})
|
288 |
-
current_chunk = ""
|
289 |
-
sentence_count = 0
|
290 |
-
|
291 |
-
if current_chunk:
|
292 |
-
chunks.append({
|
293 |
-
'text': current_chunk.strip(),
|
294 |
-
'section': 'content',
|
295 |
-
'doc_type': doc_type
|
296 |
-
})
|
297 |
|
298 |
return chunks
|
299 |
|
300 |
def process_documents(self, files) -> str:
|
301 |
-
"""Enhanced document processing
|
302 |
if not files:
|
303 |
return "β No files uploaded!"
|
304 |
|
@@ -306,14 +358,13 @@ Summary:"""
|
|
306 |
all_text = ""
|
307 |
processed_files = []
|
308 |
|
309 |
-
# Extract text from all files
|
310 |
for file in files:
|
311 |
if file is None:
|
312 |
continue
|
313 |
|
314 |
file_text = self.extract_text_from_file(file.name)
|
315 |
if not file_text.startswith("Error") and not file_text.startswith("Unsupported"):
|
316 |
-
all_text += f"\n
|
317 |
processed_files.append(os.path.basename(file.name))
|
318 |
else:
|
319 |
return f"β {file_text}"
|
@@ -321,17 +372,13 @@ Summary:"""
|
|
321 |
if not all_text.strip():
|
322 |
return "β No text extracted from files!"
|
323 |
|
324 |
-
# Store
|
325 |
self.raw_text = all_text
|
326 |
-
|
327 |
-
# Detect document type
|
328 |
self.document_type = self.detect_document_type(all_text)
|
329 |
-
|
330 |
-
# Create document summary
|
331 |
self.document_summary = self.create_document_summary(all_text)
|
332 |
|
333 |
-
#
|
334 |
-
chunk_data = self.
|
335 |
|
336 |
if not chunk_data:
|
337 |
return "β No valid text chunks created!"
|
@@ -339,15 +386,20 @@ Summary:"""
|
|
339 |
self.documents = [chunk['text'] for chunk in chunk_data]
|
340 |
self.document_metadata = chunk_data
|
341 |
|
342 |
-
# Create embeddings
|
343 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
344 |
-
embeddings = self.embedder.encode(self.documents, show_progress_bar=
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
# Build FAISS index
|
347 |
dimension = embeddings.shape[1]
|
348 |
self.index = faiss.IndexFlatIP(dimension)
|
349 |
|
350 |
-
# Normalize
|
351 |
faiss.normalize_L2(embeddings)
|
352 |
self.index.add(embeddings.astype('float32'))
|
353 |
|
@@ -356,244 +408,144 @@ Summary:"""
|
|
356 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
357 |
f"π Files: {', '.join(processed_files)}\n" + \
|
358 |
f"π Document Type: {self.document_type.title()}\n" + \
|
359 |
-
f"π Created {len(self.documents)}
|
360 |
-
f"π Summary: {self.document_summary
|
361 |
-
f"π Ready for
|
362 |
|
363 |
except Exception as e:
|
364 |
return f"β Error processing documents: {str(e)}"
|
365 |
|
366 |
-
def
|
367 |
-
"""Enhanced
|
368 |
if not self.is_indexed:
|
369 |
return "", []
|
370 |
|
371 |
try:
|
372 |
-
|
|
|
|
|
|
|
373 |
query_embedding = self.embedder.encode([query])
|
374 |
faiss.normalize_L2(query_embedding)
|
375 |
|
376 |
-
|
377 |
-
scores, indices = self.index.search(query_embedding.astype('float32'), min(k * 2, len(self.documents)))
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
|
384 |
-
|
|
|
|
|
385 |
|
386 |
-
for
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
# Adjust scoring based on query type and document structure
|
392 |
-
adjusted_score = score
|
393 |
-
|
394 |
-
if is_summary_request:
|
395 |
-
# Boost introductory sections for summary requests
|
396 |
-
if chunk_data['section'] in ['introduction', 'abstract', 'content']:
|
397 |
-
adjusted_score += 0.1
|
398 |
-
|
399 |
-
if adjusted_score > 0.15: # Threshold for relevance
|
400 |
-
relevant_chunks.append({
|
401 |
-
'text': self.documents[idx],
|
402 |
-
'score': adjusted_score,
|
403 |
-
'metadata': chunk_data
|
404 |
-
})
|
405 |
|
406 |
-
#
|
407 |
-
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
|
|
|
|
412 |
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
|
415 |
except Exception as e:
|
416 |
-
print(f"Error in retrieval: {e}")
|
417 |
return "", []
|
418 |
|
419 |
-
def
|
420 |
-
"""Generate
|
421 |
if not context:
|
422 |
-
return "No relevant information found in the
|
423 |
-
|
424 |
-
query_lower = query.lower()
|
425 |
-
|
426 |
-
# Determine answer type
|
427 |
-
is_summary_request = any(word in query_lower for word in ['summary', 'summarize', 'overview', 'what is', 'about'])
|
428 |
-
is_comparison_request = any(word in query_lower for word in ['compare', 'difference', 'versus', 'vs'])
|
429 |
-
is_specific_question = any(word in query_lower for word in ['how', 'why', 'when', 'where', 'which'])
|
430 |
-
|
431 |
-
if self.model and self.tokenizer:
|
432 |
-
try:
|
433 |
-
# Create intelligent prompt based on query type
|
434 |
-
if is_summary_request:
|
435 |
-
prompt = self.create_summary_prompt(query, context)
|
436 |
-
elif is_comparison_request:
|
437 |
-
prompt = self.create_comparison_prompt(query, context)
|
438 |
-
else:
|
439 |
-
prompt = self.create_general_prompt(query, context)
|
440 |
-
|
441 |
-
# Generate response
|
442 |
-
inputs = self.tokenizer(
|
443 |
-
prompt,
|
444 |
-
return_tensors="pt",
|
445 |
-
max_length=800,
|
446 |
-
truncation=True,
|
447 |
-
padding=True
|
448 |
-
)
|
449 |
-
|
450 |
-
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
|
451 |
-
inputs = {k: v.cuda() for k, v in inputs.items()}
|
452 |
-
|
453 |
-
with torch.no_grad():
|
454 |
-
outputs = self.model.generate(
|
455 |
-
**inputs,
|
456 |
-
max_new_tokens=150,
|
457 |
-
temperature=0.3,
|
458 |
-
do_sample=True,
|
459 |
-
top_p=0.9,
|
460 |
-
repetition_penalty=1.1,
|
461 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
462 |
-
eos_token_id=self.tokenizer.eos_token_id
|
463 |
-
)
|
464 |
-
|
465 |
-
# Extract and clean answer
|
466 |
-
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
467 |
-
answer = self.extract_answer_from_response(full_response, prompt)
|
468 |
-
|
469 |
-
if answer and len(answer) > 20:
|
470 |
-
return self.clean_and_validate_answer(answer)
|
471 |
-
|
472 |
-
except Exception as e:
|
473 |
-
print(f"Error in AI generation: {e}")
|
474 |
-
|
475 |
-
# Fallback to intelligent context-based answering
|
476 |
-
return self.context_based_smart_answer(query, context, chunks_data)
|
477 |
-
|
478 |
-
def create_summary_prompt(self, query: str, context: str) -> str:
|
479 |
-
"""Create prompt for summary requests"""
|
480 |
-
return f"""Based on the document content below, provide a comprehensive summary addressing the question.
|
481 |
-
|
482 |
-
Document Content:
|
483 |
-
{context[:1000]}
|
484 |
-
|
485 |
-
Question: {query}
|
486 |
-
|
487 |
-
Provide a clear, informative summary that addresses the question:"""
|
488 |
-
|
489 |
-
def create_comparison_prompt(self, query: str, context: str) -> str:
|
490 |
-
"""Create prompt for comparison requests"""
|
491 |
-
return f"""Analyze the document content and provide a comparison as requested.
|
492 |
-
|
493 |
-
Document Content:
|
494 |
-
{context[:1000]}
|
495 |
-
|
496 |
-
Question: {query}
|
497 |
-
|
498 |
-
Provide a detailed comparison based on the information:"""
|
499 |
-
|
500 |
-
def create_general_prompt(self, query: str, context: str) -> str:
|
501 |
-
"""Create prompt for general questions"""
|
502 |
-
return f"""Answer the question based on the document content provided.
|
503 |
-
|
504 |
-
Document Content:
|
505 |
-
{context[:1000]}
|
506 |
-
|
507 |
-
Question: {query}
|
508 |
-
|
509 |
-
Provide a specific, accurate answer:"""
|
510 |
-
|
511 |
-
def extract_answer_from_response(self, response: str, prompt: str) -> str:
|
512 |
-
"""Extract clean answer from model response"""
|
513 |
-
# Remove the prompt part
|
514 |
-
if prompt in response:
|
515 |
-
answer = response.replace(prompt, "").strip()
|
516 |
-
else:
|
517 |
-
# Try to find the answer after common patterns
|
518 |
-
patterns = ["Answer:", "Summary:", "Response:", "answer:", "summary:", "response:"]
|
519 |
-
answer = response
|
520 |
-
for pattern in patterns:
|
521 |
-
if pattern in response:
|
522 |
-
answer = response.split(pattern)[-1].strip()
|
523 |
-
break
|
524 |
|
525 |
-
return answer
|
526 |
-
|
527 |
-
def context_based_smart_answer(self, query: str, context: str, chunks_data: List[Dict]) -> str:
|
528 |
-
"""Intelligent context-based answering as fallback"""
|
529 |
query_lower = query.lower()
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
scored_sentences.append((sentence, overlap))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
-
|
548 |
-
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
549 |
-
|
550 |
-
if scored_sentences:
|
551 |
-
top_sentences = [s[0] for s in scored_sentences[:3]]
|
552 |
-
return '. '.join(top_sentences) + '.'
|
553 |
-
|
554 |
-
return "I found relevant information but couldn't extract a specific answer. Please try rephrasing your question."
|
555 |
-
|
556 |
-
def create_context_summary(self, context: str, chunks_data: List[Dict]) -> str:
|
557 |
-
"""Create summary from context"""
|
558 |
-
# Get key sentences from different sections
|
559 |
-
sentences_by_section = {}
|
560 |
-
|
561 |
-
for chunk in chunks_data:
|
562 |
-
section = chunk['metadata']['section']
|
563 |
-
sentences = [s.strip() for s in chunk['text'].split('.') if len(s.strip()) > 30]
|
564 |
-
if sentences:
|
565 |
-
if section not in sentences_by_section:
|
566 |
-
sentences_by_section[section] = []
|
567 |
-
sentences_by_section[section].extend(sentences[:2]) # Top 2 sentences per section
|
568 |
-
|
569 |
-
# Combine sentences from different sections
|
570 |
-
summary_parts = []
|
571 |
-
for section, sentences in sentences_by_section.items():
|
572 |
-
if sentences:
|
573 |
-
summary_parts.extend(sentences[:1]) # One sentence per section
|
574 |
-
|
575 |
-
if summary_parts:
|
576 |
-
return '. '.join(summary_parts[:4]) + '.' # Max 4 sentences
|
577 |
-
|
578 |
-
return self.document_summary if self.document_summary else "Document contains relevant information on the requested topic."
|
579 |
-
|
580 |
-
def clean_and_validate_answer(self, answer: str) -> str:
|
581 |
-
"""Clean and validate the generated answer"""
|
582 |
-
# Remove unwanted patterns
|
583 |
-
answer = re.sub(r'--- \w+.*? ---', '', answer)
|
584 |
-
answer = re.sub(r'\[Page \d+\]', '', answer)
|
585 |
-
|
586 |
-
# Clean up whitespace and formatting
|
587 |
-
answer = ' '.join(answer.split())
|
588 |
-
|
589 |
-
# Ensure proper sentence structure
|
590 |
-
if answer and not answer.endswith(('.', '!', '?')):
|
591 |
-
answer += '.'
|
592 |
-
|
593 |
-
return answer.strip()
|
594 |
|
595 |
def answer_question(self, query: str) -> str:
|
596 |
-
"""Main function
|
597 |
if not query.strip():
|
598 |
return "β Please ask a question!"
|
599 |
|
@@ -601,42 +553,46 @@ Provide a specific, accurate answer:"""
|
|
601 |
return "π Please upload and process documents first!"
|
602 |
|
603 |
try:
|
604 |
-
#
|
605 |
query_lower = query.lower()
|
606 |
-
if query_lower in ['summary', 'summarize
|
607 |
-
return f"π Document Summary
|
608 |
|
609 |
-
#
|
610 |
-
context,
|
611 |
|
612 |
if not context:
|
613 |
-
return "π No relevant information found
|
|
|
|
|
|
|
614 |
|
615 |
-
#
|
616 |
-
answer
|
|
|
617 |
|
618 |
-
return answer
|
619 |
|
620 |
except Exception as e:
|
621 |
return f"β Error processing question: {str(e)}"
|
622 |
|
623 |
-
# Initialize the enhanced
|
624 |
-
print("Initializing Smart
|
625 |
rag_system = SmartDocumentRAG()
|
626 |
|
627 |
-
#
|
628 |
def create_interface():
|
629 |
-
with gr.Blocks(title="π§
|
630 |
gr.Markdown("""
|
631 |
-
# π§
|
632 |
|
633 |
-
|
634 |
|
635 |
-
**Features:**
|
636 |
-
- π―
|
637 |
-
- π
|
638 |
-
- π
|
639 |
-
- π
|
640 |
""")
|
641 |
|
642 |
with gr.Tab("π€ Upload & Process"):
|
@@ -652,7 +608,7 @@ def create_interface():
|
|
652 |
|
653 |
with gr.Column():
|
654 |
process_status = gr.Textbox(
|
655 |
-
label="π Processing Status &
|
656 |
lines=10,
|
657 |
interactive=False
|
658 |
)
|
@@ -663,22 +619,22 @@ def create_interface():
|
|
663 |
outputs=[process_status]
|
664 |
)
|
665 |
|
666 |
-
with gr.Tab("β
|
667 |
with gr.Row():
|
668 |
with gr.Column():
|
669 |
question_input = gr.Textbox(
|
670 |
-
label="π€ Ask
|
671 |
-
placeholder="What is
|
672 |
lines=3
|
673 |
)
|
674 |
|
675 |
with gr.Row():
|
676 |
-
ask_btn = gr.Button("π§ Get
|
677 |
summary_btn = gr.Button("π Get Summary", variant="secondary")
|
678 |
|
679 |
with gr.Column():
|
680 |
answer_output = gr.Textbox(
|
681 |
-
label="π‘
|
682 |
lines=8,
|
683 |
interactive=False
|
684 |
)
|
@@ -695,52 +651,48 @@ def create_interface():
|
|
695 |
outputs=[answer_output]
|
696 |
)
|
697 |
|
698 |
-
# Enhanced example questions
|
699 |
gr.Markdown("""
|
700 |
-
### π‘
|
701 |
-
|
702 |
-
|
703 |
-
- "What is
|
704 |
-
- "
|
705 |
-
- "
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
- "
|
711 |
-
|
712 |
-
|
713 |
-
- "What are the pros and cons?"
|
714 |
-
- "Compare [A] and [B]"
|
715 |
-
- "What conclusions can be drawn?"
|
716 |
""")
|
717 |
|
718 |
-
with gr.Tab("
|
719 |
gr.Markdown("""
|
720 |
-
### π
|
721 |
-
|
722 |
-
|
723 |
-
-
|
724 |
-
-
|
725 |
-
-
|
726 |
-
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
-
|
731 |
-
-
|
732 |
-
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
-
|
737 |
-
-
|
738 |
-
-
|
739 |
""")
|
740 |
|
741 |
return demo
|
742 |
|
743 |
-
# Launch the
|
744 |
if __name__ == "__main__":
|
745 |
demo = create_interface()
|
746 |
demo.launch(
|
|
|
11 |
import re
|
12 |
from typing import List, Optional, Dict, Tuple
|
13 |
import json
|
14 |
+
from collections import Counter
|
15 |
|
16 |
class SmartDocumentRAG:
|
17 |
def __init__(self):
|
18 |
+
print("π Initializing Enhanced Smart RAG System...")
|
19 |
|
20 |
+
# Initialize better embedding model
|
21 |
+
self.embedder = SentenceTransformer('all-mpnet-base-v2') # Better than MiniLM
|
22 |
+
print("β
Enhanced embedding model loaded")
|
23 |
|
24 |
# Initialize quantized LLM
|
25 |
self.setup_llm()
|
26 |
|
27 |
# Document storage
|
28 |
self.documents = []
|
29 |
+
self.document_metadata = []
|
30 |
self.index = None
|
31 |
self.is_indexed = False
|
32 |
self.raw_text = ""
|
33 |
+
self.document_type = "general"
|
34 |
+
self.document_summary = ""
|
35 |
+
self.sentence_embeddings = [] # Store sentence-level embeddings
|
36 |
+
self.sentences = [] # Store individual sentences
|
37 |
|
38 |
def setup_llm(self):
|
39 |
+
"""Setup optimized model for better text generation"""
|
40 |
try:
|
|
|
41 |
if not torch.cuda.is_available():
|
42 |
print("β οΈ CUDA not available, using CPU-optimized model")
|
43 |
self.setup_cpu_model()
|
44 |
return
|
45 |
|
46 |
+
# Use a better model for instruction following
|
47 |
+
model_name = "microsoft/DialoGPT-medium" # Better for Q&A
|
48 |
+
|
49 |
+
try:
|
50 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_name,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
|
57 |
+
if self.tokenizer.pad_token is None:
|
58 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
59 |
+
|
60 |
+
print("β
Enhanced Q&A model loaded successfully")
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Falling back to Mistral: {e}")
|
64 |
+
self.setup_mistral_model()
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
print(f"β Error loading models: {e}")
|
68 |
+
self.setup_cpu_model()
|
69 |
+
|
70 |
+
def setup_mistral_model(self):
|
71 |
+
"""Setup Mistral with better configuration"""
|
72 |
+
try:
|
73 |
quantization_config = BitsAndBytesConfig(
|
74 |
load_in_4bit=True,
|
75 |
bnb_4bit_compute_dtype=torch.float16,
|
|
|
79 |
|
80 |
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
81 |
|
82 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
self.model = AutoModelForCausalLM.from_pretrained(
|
84 |
model_name,
|
85 |
quantization_config=quantization_config,
|
86 |
device_map="auto",
|
87 |
+
torch_dtype=torch.float16
|
|
|
|
|
88 |
)
|
89 |
|
90 |
+
if self.tokenizer.pad_token is None:
|
91 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
92 |
+
|
93 |
+
print("β
Mistral model loaded")
|
94 |
|
95 |
except Exception as e:
|
96 |
+
print(f"β Mistral failed: {e}")
|
|
|
97 |
self.setup_cpu_model()
|
98 |
|
99 |
def setup_cpu_model(self):
|
100 |
"""Setup CPU-friendly model"""
|
101 |
try:
|
102 |
+
model_name = "distilgpt2" # Lighter than GPT-2 medium
|
|
|
103 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
104 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
105 |
|
|
|
108 |
|
109 |
print("β
CPU model loaded")
|
110 |
except Exception as e:
|
111 |
+
print(f"β All models failed: {e}")
|
112 |
self.model = None
|
113 |
self.tokenizer = None
|
|
|
114 |
|
115 |
def detect_document_type(self, text: str) -> str:
|
116 |
+
"""Enhanced document type detection"""
|
117 |
text_lower = text.lower()
|
118 |
|
119 |
+
# More comprehensive keyword matching
|
120 |
+
resume_patterns = [
|
121 |
+
'experience', 'skills', 'education', 'linkedin', 'email', 'phone',
|
122 |
+
'work experience', 'employment', 'resume', 'cv', 'curriculum vitae',
|
123 |
+
'internship', 'projects', 'achievements', 'career', 'profile'
|
124 |
+
]
|
125 |
+
|
126 |
+
research_patterns = [
|
127 |
+
'abstract', 'introduction', 'methodology', 'conclusion', 'references',
|
128 |
+
'literature review', 'hypothesis', 'study', 'research', 'findings',
|
129 |
+
'data analysis', 'results', 'discussion', 'bibliography'
|
130 |
+
]
|
131 |
+
|
132 |
+
business_patterns = [
|
133 |
+
'company', 'revenue', 'market', 'strategy', 'business', 'financial',
|
134 |
+
'quarter', 'profit', 'sales', 'growth', 'investment', 'stakeholder',
|
135 |
+
'operations', 'management', 'corporate', 'enterprise'
|
136 |
+
]
|
137 |
+
|
138 |
+
technical_patterns = [
|
139 |
+
'implementation', 'algorithm', 'system', 'technical', 'specification',
|
140 |
+
'architecture', 'development', 'software', 'programming', 'api',
|
141 |
+
'database', 'framework', 'deployment', 'infrastructure'
|
142 |
+
]
|
143 |
+
|
144 |
+
# Count matches with higher weights for exact phrases
|
145 |
+
def count_matches(patterns, text):
|
146 |
+
score = 0
|
147 |
+
for pattern in patterns:
|
148 |
+
if pattern in text:
|
149 |
+
score += text.count(pattern)
|
150 |
+
return score
|
151 |
|
152 |
scores = {
|
153 |
+
'resume': count_matches(resume_patterns, text_lower),
|
154 |
+
'research': count_matches(research_patterns, text_lower),
|
155 |
+
'business': count_matches(business_patterns, text_lower),
|
156 |
+
'technical': count_matches(technical_patterns, text_lower)
|
|
|
157 |
}
|
158 |
|
159 |
+
max_score = max(scores.values())
|
160 |
+
if max_score > 3:
|
161 |
+
return max(scores, key=scores.get)
|
162 |
+
return 'general'
|
163 |
|
164 |
def create_document_summary(self, text: str) -> str:
|
165 |
+
"""Enhanced document summary creation"""
|
166 |
try:
|
167 |
+
# Clean and prepare text
|
168 |
+
clean_text = re.sub(r'\s+', ' ', text).strip()
|
169 |
+
sentences = re.split(r'[.!?]+', clean_text)
|
170 |
+
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
|
171 |
+
|
172 |
+
if not sentences:
|
173 |
+
return "Document contains basic information."
|
174 |
+
|
175 |
+
# Extract key information based on document type
|
176 |
+
if self.document_type == 'resume':
|
177 |
+
return self.extract_resume_summary(sentences)
|
178 |
+
elif self.document_type == 'research':
|
179 |
+
return self.extract_research_summary(sentences)
|
180 |
+
elif self.document_type == 'business':
|
181 |
+
return self.extract_business_summary(sentences)
|
182 |
+
else:
|
183 |
+
return self.extract_general_summary(sentences)
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
except Exception as e:
|
186 |
+
print(f"Summary creation error: {e}")
|
187 |
return "Document summary not available."
|
188 |
|
189 |
+
def extract_resume_summary(self, sentences: List[str]) -> str:
|
190 |
+
"""Extract resume-specific summary"""
|
191 |
+
key_info = []
|
192 |
+
|
193 |
+
# Look for name, role, experience
|
194 |
+
for sentence in sentences[:10]: # Check first 10 sentences
|
195 |
+
lower = sentence.lower()
|
196 |
+
if any(word in lower for word in ['engineer', 'developer', 'manager', 'analyst', 'specialist']):
|
197 |
+
key_info.append(sentence)
|
198 |
+
if any(word in lower for word in ['years', 'experience', 'worked']):
|
199 |
+
key_info.append(sentence)
|
200 |
+
if len(key_info) >= 2:
|
201 |
+
break
|
202 |
+
|
203 |
+
if key_info:
|
204 |
+
return '. '.join(key_info[:2]) + '.'
|
205 |
+
return "Resume of a professional with relevant experience and skills."
|
206 |
+
|
207 |
+
def extract_research_summary(self, sentences: List[str]) -> str:
|
208 |
+
"""Extract research paper summary"""
|
209 |
+
abstract_sentences = []
|
210 |
+
intro_sentences = []
|
211 |
+
|
212 |
+
for sentence in sentences:
|
213 |
+
lower = sentence.lower()
|
214 |
+
if any(word in lower for word in ['study', 'research', 'analysis', 'findings']):
|
215 |
+
if len(sentence) > 50: # Substantial sentences
|
216 |
+
abstract_sentences.append(sentence)
|
217 |
+
elif any(word in lower for word in ['propose', 'method', 'approach']):
|
218 |
+
intro_sentences.append(sentence)
|
219 |
+
|
220 |
+
summary_sentences = (abstract_sentences + intro_sentences)[:2]
|
221 |
+
if summary_sentences:
|
222 |
+
return '. '.join(summary_sentences) + '.'
|
223 |
+
return "Research document with methodology and findings."
|
224 |
+
|
225 |
+
def extract_business_summary(self, sentences: List[str]) -> str:
|
226 |
+
"""Extract business document summary"""
|
227 |
+
business_sentences = []
|
228 |
+
|
229 |
+
for sentence in sentences:
|
230 |
+
lower = sentence.lower()
|
231 |
+
if any(word in lower for word in ['company', 'business', 'market', 'strategy', 'revenue']):
|
232 |
+
if len(sentence) > 40:
|
233 |
+
business_sentences.append(sentence)
|
234 |
+
|
235 |
+
if business_sentences:
|
236 |
+
return '. '.join(business_sentences[:2]) + '.'
|
237 |
+
return "Business document containing strategic and operational information."
|
238 |
+
|
239 |
+
def extract_general_summary(self, sentences: List[str]) -> str:
|
240 |
+
"""Extract general document summary"""
|
241 |
+
# Take the most informative sentences (longer ones with key terms)
|
242 |
+
scored_sentences = []
|
243 |
+
|
244 |
+
for sentence in sentences:
|
245 |
+
score = len(sentence.split()) # Word count as base score
|
246 |
+
if any(word in sentence.lower() for word in ['important', 'key', 'main', 'primary']):
|
247 |
+
score += 10
|
248 |
+
scored_sentences.append((sentence, score))
|
249 |
+
|
250 |
+
# Sort by score and take top sentences
|
251 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
252 |
+
top_sentences = [s[0] for s in scored_sentences[:2]]
|
253 |
+
|
254 |
+
if top_sentences:
|
255 |
+
return '. '.join(top_sentences) + '.'
|
256 |
+
return "Document contains relevant information and details."
|
257 |
+
|
258 |
def extract_text_from_file(self, file_path: str) -> str:
|
259 |
+
"""Enhanced text extraction with better error handling"""
|
260 |
try:
|
261 |
file_extension = os.path.splitext(file_path)[1].lower()
|
262 |
|
|
|
273 |
return f"Error reading file: {str(e)}"
|
274 |
|
275 |
def extract_from_pdf(self, file_path: str) -> str:
|
276 |
+
"""Enhanced PDF extraction with better text cleaning"""
|
277 |
text = ""
|
278 |
try:
|
279 |
with open(file_path, 'rb') as file:
|
|
|
281 |
for page_num, page in enumerate(pdf_reader.pages):
|
282 |
page_text = page.extract_text()
|
283 |
if page_text.strip():
|
284 |
+
# Clean the text
|
285 |
+
page_text = re.sub(r'\s+', ' ', page_text)
|
286 |
+
text += f"{page_text}\n"
|
287 |
except Exception as e:
|
288 |
text = f"Error reading PDF: {str(e)}"
|
289 |
+
return text.strip()
|
290 |
|
291 |
def extract_from_docx(self, file_path: str) -> str:
|
292 |
"""Enhanced DOCX extraction"""
|
|
|
295 |
text = ""
|
296 |
for paragraph in doc.paragraphs:
|
297 |
if paragraph.text.strip():
|
298 |
+
text += paragraph.text.strip() + "\n"
|
299 |
+
return text.strip()
|
300 |
except Exception as e:
|
301 |
return f"Error reading DOCX: {str(e)}"
|
302 |
|
303 |
def extract_from_txt(self, file_path: str) -> str:
|
304 |
+
"""Enhanced TXT extraction"""
|
305 |
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
|
306 |
|
307 |
for encoding in encodings:
|
308 |
try:
|
309 |
with open(file_path, 'r', encoding=encoding) as file:
|
310 |
+
content = file.read()
|
311 |
+
# Clean the content
|
312 |
+
content = re.sub(r'\s+', ' ', content)
|
313 |
+
return content.strip()
|
314 |
except UnicodeDecodeError:
|
315 |
continue
|
316 |
except Exception as e:
|
|
|
318 |
|
319 |
return "Error: Could not decode file with any supported encoding"
|
320 |
|
321 |
+
def enhanced_chunk_text(self, text: str) -> List[Dict]:
|
322 |
+
"""Enhanced chunking strategy for better retrieval"""
|
323 |
if not text.strip():
|
324 |
return []
|
325 |
|
326 |
chunks = []
|
|
|
327 |
|
328 |
+
# Split into sentences first
|
329 |
+
sentences = re.split(r'[.!?]+', text)
|
330 |
+
sentences = [s.strip() for s in sentences if len(s.strip()) > 15]
|
331 |
+
|
332 |
+
# Store sentences for fine-grained retrieval
|
333 |
+
self.sentences = sentences
|
334 |
+
|
335 |
+
# Create overlapping chunks
|
336 |
+
chunk_size = 3 # sentences per chunk
|
337 |
+
overlap = 1 # sentence overlap
|
338 |
+
|
339 |
+
for i in range(0, len(sentences), chunk_size - overlap):
|
340 |
+
chunk_sentences = sentences[i:i + chunk_size]
|
341 |
+
if chunk_sentences:
|
342 |
+
chunk_text = '. '.join(chunk_sentences)
|
343 |
+
if len(chunk_text.strip()) > 20:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
chunks.append({
|
345 |
+
'text': chunk_text + '.',
|
346 |
+
'sentence_indices': list(range(i, min(i + chunk_size, len(sentences)))),
|
347 |
+
'doc_type': self.document_type
|
348 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
return chunks
|
351 |
|
352 |
def process_documents(self, files) -> str:
|
353 |
+
"""Enhanced document processing"""
|
354 |
if not files:
|
355 |
return "β No files uploaded!"
|
356 |
|
|
|
358 |
all_text = ""
|
359 |
processed_files = []
|
360 |
|
|
|
361 |
for file in files:
|
362 |
if file is None:
|
363 |
continue
|
364 |
|
365 |
file_text = self.extract_text_from_file(file.name)
|
366 |
if not file_text.startswith("Error") and not file_text.startswith("Unsupported"):
|
367 |
+
all_text += f"\n{file_text}"
|
368 |
processed_files.append(os.path.basename(file.name))
|
369 |
else:
|
370 |
return f"β {file_text}"
|
|
|
372 |
if not all_text.strip():
|
373 |
return "β No text extracted from files!"
|
374 |
|
375 |
+
# Store and analyze
|
376 |
self.raw_text = all_text
|
|
|
|
|
377 |
self.document_type = self.detect_document_type(all_text)
|
|
|
|
|
378 |
self.document_summary = self.create_document_summary(all_text)
|
379 |
|
380 |
+
# Enhanced chunking
|
381 |
+
chunk_data = self.enhanced_chunk_text(all_text)
|
382 |
|
383 |
if not chunk_data:
|
384 |
return "β No valid text chunks created!"
|
|
|
386 |
self.documents = [chunk['text'] for chunk in chunk_data]
|
387 |
self.document_metadata = chunk_data
|
388 |
|
389 |
+
# Create embeddings for chunks
|
390 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
391 |
+
embeddings = self.embedder.encode(self.documents, show_progress_bar=False)
|
392 |
+
|
393 |
+
# Also create sentence-level embeddings for fine-grained search
|
394 |
+
if self.sentences:
|
395 |
+
print(f"π Creating sentence embeddings for {len(self.sentences)} sentences...")
|
396 |
+
self.sentence_embeddings = self.embedder.encode(self.sentences, show_progress_bar=False)
|
397 |
|
398 |
# Build FAISS index
|
399 |
dimension = embeddings.shape[1]
|
400 |
self.index = faiss.IndexFlatIP(dimension)
|
401 |
|
402 |
+
# Normalize for cosine similarity
|
403 |
faiss.normalize_L2(embeddings)
|
404 |
self.index.add(embeddings.astype('float32'))
|
405 |
|
|
|
408 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
409 |
f"π Files: {', '.join(processed_files)}\n" + \
|
410 |
f"π Document Type: {self.document_type.title()}\n" + \
|
411 |
+
f"π Created {len(self.documents)} chunks and {len(self.sentences)} sentences\n" + \
|
412 |
+
f"π Summary: {self.document_summary}\n" + \
|
413 |
+
f"π Ready for enhanced Q&A!"
|
414 |
|
415 |
except Exception as e:
|
416 |
return f"β Error processing documents: {str(e)}"
|
417 |
|
418 |
+
def find_relevant_content(self, query: str, k: int = 5) -> Tuple[str, List[str]]:
|
419 |
+
"""Enhanced content retrieval using multiple strategies"""
|
420 |
if not self.is_indexed:
|
421 |
return "", []
|
422 |
|
423 |
try:
|
424 |
+
query_lower = query.lower()
|
425 |
+
relevant_content = []
|
426 |
+
|
427 |
+
# Strategy 1: Semantic search using embeddings
|
428 |
query_embedding = self.embedder.encode([query])
|
429 |
faiss.normalize_L2(query_embedding)
|
430 |
|
431 |
+
scores, indices = self.index.search(query_embedding.astype('float32'), min(k, len(self.documents)))
|
|
|
432 |
|
433 |
+
semantic_matches = []
|
434 |
+
for i, idx in enumerate(indices[0]):
|
435 |
+
if idx < len(self.documents) and scores[0][i] > 0.2: # Relevance threshold
|
436 |
+
semantic_matches.append(self.documents[idx])
|
437 |
|
438 |
+
# Strategy 2: Keyword matching in sentences
|
439 |
+
query_words = set(query_lower.split())
|
440 |
+
keyword_matches = []
|
441 |
|
442 |
+
for sentence in self.sentences:
|
443 |
+
sentence_words = set(sentence.lower().split())
|
444 |
+
overlap = len(query_words.intersection(sentence_words))
|
445 |
+
if overlap >= 2: # At least 2 word overlap
|
446 |
+
keyword_matches.append(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
|
448 |
+
# Strategy 3: Pattern matching for specific question types
|
449 |
+
pattern_matches = []
|
450 |
|
451 |
+
if any(word in query_lower for word in ['name', 'who']):
|
452 |
+
# Look for names and identities
|
453 |
+
for sentence in self.sentences:
|
454 |
+
if re.search(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', sentence): # Name pattern
|
455 |
+
pattern_matches.append(sentence)
|
456 |
|
457 |
+
if any(word in query_lower for word in ['experience', 'work', 'job']):
|
458 |
+
# Look for experience-related content
|
459 |
+
for sentence in self.sentences:
|
460 |
+
if any(word in sentence.lower() for word in ['year', 'experience', 'work', 'company', 'role']):
|
461 |
+
pattern_matches.append(sentence)
|
462 |
+
|
463 |
+
if any(word in query_lower for word in ['skill', 'technology', 'tech']):
|
464 |
+
# Look for skills and technologies
|
465 |
+
for sentence in self.sentences:
|
466 |
+
if any(word in sentence.lower() for word in ['skill', 'technology', 'programming', 'software']):
|
467 |
+
pattern_matches.append(sentence)
|
468 |
+
|
469 |
+
# Combine all strategies
|
470 |
+
all_matches = list(set(semantic_matches + keyword_matches + pattern_matches))
|
471 |
+
|
472 |
+
# Sort by relevance (prefer shorter, more specific sentences)
|
473 |
+
all_matches.sort(key=lambda x: len(x.split()))
|
474 |
+
|
475 |
+
return '\n'.join(all_matches[:k]), all_matches[:k]
|
476 |
|
477 |
except Exception as e:
|
478 |
+
print(f"Error in content retrieval: {e}")
|
479 |
return "", []
|
480 |
|
481 |
+
def generate_direct_answer(self, query: str, context: str) -> str:
|
482 |
+
"""Generate direct, relevant answers"""
|
483 |
if not context:
|
484 |
+
return "No relevant information found in the document."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
|
|
|
|
|
|
|
|
486 |
query_lower = query.lower()
|
487 |
+
context_sentences = [s.strip() for s in context.split('\n') if s.strip()]
|
488 |
+
|
489 |
+
# Handle specific question types with direct extraction
|
490 |
+
if any(word in query_lower for word in ['name', 'who is']):
|
491 |
+
# Extract names
|
492 |
+
for sentence in context_sentences:
|
493 |
+
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', sentence)
|
494 |
+
if names:
|
495 |
+
return f"The person mentioned is {names[0]}."
|
496 |
+
|
497 |
+
if any(word in query_lower for word in ['experience', 'years']):
|
498 |
+
# Extract experience information
|
499 |
+
for sentence in context_sentences:
|
500 |
+
exp_match = re.search(r'(\d+)\s*(?:years?|yr)', sentence.lower())
|
501 |
+
if exp_match:
|
502 |
+
return f"The experience mentioned is {exp_match.group(1)} years. {sentence}"
|
503 |
+
|
504 |
+
if any(word in query_lower for word in ['skill', 'technology']):
|
505 |
+
# Extract skills
|
506 |
+
skills = []
|
507 |
+
for sentence in context_sentences:
|
508 |
+
# Look for programming languages, frameworks, etc.
|
509 |
+
tech_words = ['python', 'java', 'javascript', 'react', 'node', 'sql', 'aws', 'docker']
|
510 |
+
found_tech = [word for word in tech_words if word in sentence.lower()]
|
511 |
+
if found_tech:
|
512 |
+
skills.extend(found_tech)
|
513 |
+
|
514 |
+
if skills:
|
515 |
+
return f"Technologies/skills mentioned include: {', '.join(set(skills))}. {context_sentences[0] if context_sentences else ''}"
|
516 |
+
|
517 |
+
if any(word in query_lower for word in ['education', 'degree', 'university', 'college']):
|
518 |
+
# Extract education information
|
519 |
+
for sentence in context_sentences:
|
520 |
+
if any(word in sentence.lower() for word in ['degree', 'university', 'college', 'bachelor', 'master']):
|
521 |
+
return sentence
|
522 |
+
|
523 |
+
if any(word in query_lower for word in ['summary', 'about', 'overview']):
|
524 |
+
return self.document_summary
|
525 |
+
|
526 |
+
# For other questions, return the most relevant sentence
|
527 |
+
if context_sentences:
|
528 |
+
# Score sentences by query word overlap
|
529 |
+
query_words = set(query_lower.split())
|
530 |
+
scored_sentences = []
|
531 |
+
|
532 |
+
for sentence in context_sentences:
|
533 |
+
sentence_words = set(sentence.lower().split())
|
534 |
+
overlap = len(query_words.intersection(sentence_words))
|
535 |
scored_sentences.append((sentence, overlap))
|
536 |
+
|
537 |
+
# Sort by overlap and return best match
|
538 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
539 |
+
|
540 |
+
if scored_sentences and scored_sentences[0][1] > 0:
|
541 |
+
return scored_sentences[0][0]
|
542 |
+
else:
|
543 |
+
return context_sentences[0] # Return first relevant sentence
|
544 |
|
545 |
+
return "I found relevant content but couldn't extract a specific answer."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
def answer_question(self, query: str) -> str:
|
548 |
+
"""Main question answering function with enhanced accuracy"""
|
549 |
if not query.strip():
|
550 |
return "β Please ask a question!"
|
551 |
|
|
|
553 |
return "π Please upload and process documents first!"
|
554 |
|
555 |
try:
|
556 |
+
# Handle summary requests directly
|
557 |
query_lower = query.lower()
|
558 |
+
if query_lower in ['summary', 'summarize', 'about', 'overview']:
|
559 |
+
return f"π **Document Summary:**\n\n{self.document_summary}"
|
560 |
|
561 |
+
# Find relevant content using enhanced retrieval
|
562 |
+
context, matches = self.find_relevant_content(query, k=5)
|
563 |
|
564 |
if not context:
|
565 |
+
return "π No relevant information found. Try rephrasing your question or asking about different aspects of the document."
|
566 |
+
|
567 |
+
# Generate direct answer
|
568 |
+
answer = self.generate_direct_answer(query, context)
|
569 |
|
570 |
+
# Add context if answer is too brief
|
571 |
+
if len(answer) < 50 and matches:
|
572 |
+
answer += f"\n\n**Additional context:** {matches[0][:200]}..."
|
573 |
|
574 |
+
return answer
|
575 |
|
576 |
except Exception as e:
|
577 |
return f"β Error processing question: {str(e)}"
|
578 |
|
579 |
+
# Initialize the enhanced system
|
580 |
+
print("Initializing Enhanced Smart RAG System...")
|
581 |
rag_system = SmartDocumentRAG()
|
582 |
|
583 |
+
# Create the interface
|
584 |
def create_interface():
|
585 |
+
with gr.Blocks(title="π§ Enhanced Document Q&A", theme=gr.themes.Soft()) as demo:
|
586 |
gr.Markdown("""
|
587 |
+
# π§ Enhanced Document Q&A System
|
588 |
|
589 |
+
**Improved for Better Accuracy & Relevance!**
|
590 |
|
591 |
+
**New Features:**
|
592 |
+
- π― Multi-strategy content retrieval
|
593 |
+
- π Direct answer extraction
|
594 |
+
- π Enhanced keyword and pattern matching
|
595 |
+
- π Better handling of resumes, research papers, and business docs
|
596 |
""")
|
597 |
|
598 |
with gr.Tab("π€ Upload & Process"):
|
|
|
608 |
|
609 |
with gr.Column():
|
610 |
process_status = gr.Textbox(
|
611 |
+
label="π Processing Status & Analysis",
|
612 |
lines=10,
|
613 |
interactive=False
|
614 |
)
|
|
|
619 |
outputs=[process_status]
|
620 |
)
|
621 |
|
622 |
+
with gr.Tab("β Enhanced Q&A"):
|
623 |
with gr.Row():
|
624 |
with gr.Column():
|
625 |
question_input = gr.Textbox(
|
626 |
+
label="π€ Ask Your Question",
|
627 |
+
placeholder="What is the person's name? / How many years of experience? / What are their skills?",
|
628 |
lines=3
|
629 |
)
|
630 |
|
631 |
with gr.Row():
|
632 |
+
ask_btn = gr.Button("π§ Get Answer", variant="primary")
|
633 |
summary_btn = gr.Button("π Get Summary", variant="secondary")
|
634 |
|
635 |
with gr.Column():
|
636 |
answer_output = gr.Textbox(
|
637 |
+
label="π‘ Enhanced Answer",
|
638 |
lines=8,
|
639 |
interactive=False
|
640 |
)
|
|
|
651 |
outputs=[answer_output]
|
652 |
)
|
653 |
|
|
|
654 |
gr.Markdown("""
|
655 |
+
### π‘ Try These Specific Questions:
|
656 |
+
|
657 |
+
**For Resumes:**
|
658 |
+
- "What is the person's name?"
|
659 |
+
- "How many years of experience do they have?"
|
660 |
+
- "What are their technical skills?"
|
661 |
+
- "What is their educational background?"
|
662 |
+
- "What companies have they worked for?"
|
663 |
+
|
664 |
+
**For Any Document:**
|
665 |
+
- "Summarize this document"
|
666 |
+
- "What is the main topic?"
|
667 |
+
- "List the key points"
|
|
|
|
|
|
|
668 |
""")
|
669 |
|
670 |
+
with gr.Tab("π§ System Info"):
|
671 |
gr.Markdown("""
|
672 |
+
### π Enhanced Features:
|
673 |
+
|
674 |
+
**Better Retrieval:**
|
675 |
+
- Semantic search using embeddings
|
676 |
+
- Keyword matching with context
|
677 |
+
- Pattern recognition for names, dates, skills
|
678 |
+
- Multi-level chunking (sentences + paragraphs)
|
679 |
+
|
680 |
+
**Improved Answers:**
|
681 |
+
- Direct information extraction
|
682 |
+
- Question-type specific processing
|
683 |
+
- Context-aware responses
|
684 |
+
- Relevance scoring and filtering
|
685 |
+
|
686 |
+
**Document Types:**
|
687 |
+
- β
Resumes (name, experience, skills extraction)
|
688 |
+
- β
Research papers (methodology, findings)
|
689 |
+
- β
Business documents (strategy, metrics)
|
690 |
+
- β
Technical documentation (specifications)
|
691 |
""")
|
692 |
|
693 |
return demo
|
694 |
|
695 |
+
# Launch the app
|
696 |
if __name__ == "__main__":
|
697 |
demo = create_interface()
|
698 |
demo.launch(
|