Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import faiss
|
6 |
import numpy as np
|
@@ -12,16 +12,18 @@ import re
|
|
12 |
from typing import List, Optional, Dict, Tuple
|
13 |
import json
|
14 |
from collections import Counter
|
|
|
|
|
15 |
|
16 |
class SmartDocumentRAG:
|
17 |
def __init__(self):
|
18 |
print("π Initializing Enhanced Smart RAG System...")
|
19 |
|
20 |
# Initialize better embedding model
|
21 |
-
self.embedder = SentenceTransformer('all-
|
22 |
-
print("β
|
23 |
|
24 |
-
# Initialize
|
25 |
self.setup_llm()
|
26 |
|
27 |
# Document storage
|
@@ -32,121 +34,157 @@ class SmartDocumentRAG:
|
|
32 |
self.raw_text = ""
|
33 |
self.document_type = "general"
|
34 |
self.document_summary = ""
|
35 |
-
self.sentence_embeddings = []
|
36 |
-
self.sentences = []
|
37 |
|
38 |
def setup_llm(self):
|
39 |
-
"""Setup optimized model
|
40 |
try:
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
self.setup_cpu_model()
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
try:
|
|
|
|
|
|
|
|
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
model_name,
|
|
|
|
|
53 |
torch_dtype=torch.float16,
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
|
57 |
if self.tokenizer.pad_token is None:
|
58 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
59 |
|
60 |
-
print("β
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
print(f"Falling back to Mistral: {e}")
|
64 |
-
self.setup_mistral_model()
|
65 |
|
66 |
except Exception as e:
|
67 |
-
print(f"β
|
68 |
self.setup_cpu_model()
|
69 |
|
70 |
-
def
|
71 |
-
"""Setup
|
72 |
try:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
84 |
-
model_name,
|
85 |
-
quantization_config=quantization_config,
|
86 |
-
device_map="auto",
|
87 |
-
torch_dtype=torch.float16
|
88 |
-
)
|
89 |
-
|
90 |
-
if self.tokenizer.pad_token is None:
|
91 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
92 |
-
|
93 |
-
print("β
Mistral model loaded")
|
94 |
|
95 |
except Exception as e:
|
96 |
-
print(f"β
|
97 |
-
self.
|
98 |
|
99 |
-
def
|
100 |
-
"""
|
101 |
try:
|
102 |
-
|
103 |
-
self.
|
104 |
-
self.
|
105 |
-
|
106 |
-
if self.tokenizer.pad_token is None:
|
107 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
108 |
-
|
109 |
-
print("β
CPU model loaded")
|
110 |
except Exception as e:
|
111 |
print(f"β All models failed: {e}")
|
112 |
-
self.
|
113 |
-
self.
|
114 |
|
115 |
def detect_document_type(self, text: str) -> str:
|
116 |
"""Enhanced document type detection"""
|
117 |
text_lower = text.lower()
|
118 |
|
119 |
-
# More comprehensive keyword matching
|
120 |
resume_patterns = [
|
121 |
'experience', 'skills', 'education', 'linkedin', 'email', 'phone',
|
122 |
'work experience', 'employment', 'resume', 'cv', 'curriculum vitae',
|
123 |
-
'internship', 'projects', 'achievements', 'career', 'profile'
|
124 |
]
|
125 |
|
126 |
research_patterns = [
|
127 |
'abstract', 'introduction', 'methodology', 'conclusion', 'references',
|
128 |
'literature review', 'hypothesis', 'study', 'research', 'findings',
|
129 |
-
'data analysis', 'results', 'discussion', 'bibliography'
|
130 |
]
|
131 |
|
132 |
business_patterns = [
|
133 |
'company', 'revenue', 'market', 'strategy', 'business', 'financial',
|
134 |
'quarter', 'profit', 'sales', 'growth', 'investment', 'stakeholder',
|
135 |
-
'operations', 'management', 'corporate', 'enterprise'
|
136 |
]
|
137 |
|
138 |
technical_patterns = [
|
139 |
'implementation', 'algorithm', 'system', 'technical', 'specification',
|
140 |
'architecture', 'development', 'software', 'programming', 'api',
|
141 |
-
'database', 'framework', 'deployment', 'infrastructure'
|
142 |
]
|
143 |
|
144 |
-
# Count matches with higher weights for exact phrases
|
145 |
def count_matches(patterns, text):
|
146 |
score = 0
|
147 |
for pattern in patterns:
|
148 |
-
|
149 |
-
|
150 |
return score
|
151 |
|
152 |
scores = {
|
@@ -157,24 +195,23 @@ class SmartDocumentRAG:
|
|
157 |
}
|
158 |
|
159 |
max_score = max(scores.values())
|
160 |
-
if max_score >
|
161 |
return max(scores, key=scores.get)
|
162 |
return 'general'
|
163 |
|
164 |
def create_document_summary(self, text: str) -> str:
|
165 |
"""Enhanced document summary creation"""
|
166 |
try:
|
167 |
-
# Clean and prepare text
|
168 |
clean_text = re.sub(r'\s+', ' ', text).strip()
|
169 |
sentences = re.split(r'[.!?]+', clean_text)
|
170 |
-
sentences = [s.strip() for s in sentences if len(s.strip()) >
|
171 |
|
172 |
if not sentences:
|
173 |
return "Document contains basic information."
|
174 |
|
175 |
-
#
|
176 |
if self.document_type == 'resume':
|
177 |
-
return self.extract_resume_summary(sentences)
|
178 |
elif self.document_type == 'research':
|
179 |
return self.extract_research_summary(sentences)
|
180 |
elif self.document_type == 'business':
|
@@ -186,77 +223,85 @@ class SmartDocumentRAG:
|
|
186 |
print(f"Summary creation error: {e}")
|
187 |
return "Document summary not available."
|
188 |
|
189 |
-
def extract_resume_summary(self, sentences: List[str]) -> str:
|
190 |
-
"""Extract resume-specific summary"""
|
191 |
-
|
192 |
-
|
193 |
-
#
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
def extract_research_summary(self, sentences: List[str]) -> str:
|
208 |
"""Extract research paper summary"""
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
if len(sentence) > 50: # Substantial sentences
|
216 |
-
abstract_sentences.append(sentence)
|
217 |
-
elif any(word in lower for word in ['propose', 'method', 'approach']):
|
218 |
-
intro_sentences.append(sentence)
|
219 |
-
|
220 |
-
summary_sentences = (abstract_sentences + intro_sentences)[:2]
|
221 |
-
if summary_sentences:
|
222 |
-
return '. '.join(summary_sentences) + '.'
|
223 |
-
return "Research document with methodology and findings."
|
224 |
|
225 |
def extract_business_summary(self, sentences: List[str]) -> str:
|
226 |
"""Extract business document summary"""
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
lower = sentence.lower()
|
231 |
-
if any(word in lower for word in ['company', 'business', 'market', 'strategy', 'revenue']):
|
232 |
-
if len(sentence) > 40:
|
233 |
-
business_sentences.append(sentence)
|
234 |
|
235 |
-
|
236 |
-
return '. '.join(business_sentences[:2]) + '.'
|
237 |
-
return "Business document containing strategic and operational information."
|
238 |
|
239 |
def extract_general_summary(self, sentences: List[str]) -> str:
|
240 |
"""Extract general document summary"""
|
241 |
-
|
242 |
-
scored_sentences = []
|
243 |
-
|
244 |
-
for sentence in sentences:
|
245 |
-
score = len(sentence.split()) # Word count as base score
|
246 |
-
if any(word in sentence.lower() for word in ['important', 'key', 'main', 'primary']):
|
247 |
-
score += 10
|
248 |
-
scored_sentences.append((sentence, score))
|
249 |
-
|
250 |
-
# Sort by score and take top sentences
|
251 |
-
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
252 |
-
top_sentences = [s[0] for s in scored_sentences[:2]]
|
253 |
-
|
254 |
-
if top_sentences:
|
255 |
-
return '. '.join(top_sentences) + '.'
|
256 |
-
return "Document contains relevant information and details."
|
257 |
|
258 |
def extract_text_from_file(self, file_path: str) -> str:
|
259 |
-
"""Enhanced text extraction
|
260 |
try:
|
261 |
file_extension = os.path.splitext(file_path)[1].lower()
|
262 |
|
@@ -273,16 +318,17 @@ class SmartDocumentRAG:
|
|
273 |
return f"Error reading file: {str(e)}"
|
274 |
|
275 |
def extract_from_pdf(self, file_path: str) -> str:
|
276 |
-
"""Enhanced PDF extraction
|
277 |
text = ""
|
278 |
try:
|
279 |
with open(file_path, 'rb') as file:
|
280 |
pdf_reader = PyPDF2.PdfReader(file)
|
281 |
-
for
|
282 |
page_text = page.extract_text()
|
283 |
if page_text.strip():
|
284 |
-
#
|
285 |
page_text = re.sub(r'\s+', ' ', page_text)
|
|
|
286 |
text += f"{page_text}\n"
|
287 |
except Exception as e:
|
288 |
text = f"Error reading PDF: {str(e)}"
|
@@ -307,45 +353,39 @@ class SmartDocumentRAG:
|
|
307 |
for encoding in encodings:
|
308 |
try:
|
309 |
with open(file_path, 'r', encoding=encoding) as file:
|
310 |
-
|
311 |
-
# Clean the content
|
312 |
-
content = re.sub(r'\s+', ' ', content)
|
313 |
-
return content.strip()
|
314 |
except UnicodeDecodeError:
|
315 |
continue
|
316 |
except Exception as e:
|
317 |
return f"Error reading TXT: {str(e)}"
|
318 |
|
319 |
-
return "Error: Could not decode file
|
320 |
|
321 |
def enhanced_chunk_text(self, text: str) -> List[Dict]:
|
322 |
-
"""Enhanced chunking
|
323 |
if not text.strip():
|
324 |
return []
|
325 |
|
326 |
chunks = []
|
327 |
|
328 |
-
# Split into sentences
|
329 |
sentences = re.split(r'[.!?]+', text)
|
330 |
-
sentences = [s.strip() for s in sentences if len(s.strip()) >
|
331 |
-
|
332 |
-
# Store sentences for fine-grained retrieval
|
333 |
self.sentences = sentences
|
334 |
|
335 |
# Create overlapping chunks
|
336 |
-
chunk_size =
|
337 |
-
overlap =
|
338 |
|
339 |
for i in range(0, len(sentences), chunk_size - overlap):
|
340 |
chunk_sentences = sentences[i:i + chunk_size]
|
341 |
if chunk_sentences:
|
342 |
-
chunk_text = '. '.join(chunk_sentences)
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
})
|
349 |
|
350 |
return chunks
|
351 |
|
@@ -386,15 +426,10 @@ class SmartDocumentRAG:
|
|
386 |
self.documents = [chunk['text'] for chunk in chunk_data]
|
387 |
self.document_metadata = chunk_data
|
388 |
|
389 |
-
# Create embeddings
|
390 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
391 |
embeddings = self.embedder.encode(self.documents, show_progress_bar=False)
|
392 |
|
393 |
-
# Also create sentence-level embeddings for fine-grained search
|
394 |
-
if self.sentences:
|
395 |
-
print(f"π Creating sentence embeddings for {len(self.sentences)} sentences...")
|
396 |
-
self.sentence_embeddings = self.embedder.encode(self.sentences, show_progress_bar=False)
|
397 |
-
|
398 |
# Build FAISS index
|
399 |
dimension = embeddings.shape[1]
|
400 |
self.index = faiss.IndexFlatIP(dimension)
|
@@ -408,144 +443,38 @@ class SmartDocumentRAG:
|
|
408 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
409 |
f"π Files: {', '.join(processed_files)}\n" + \
|
410 |
f"π Document Type: {self.document_type.title()}\n" + \
|
411 |
-
f"π Created {len(self.documents)} chunks
|
412 |
f"π Summary: {self.document_summary}\n" + \
|
413 |
-
f"π Ready for
|
414 |
|
415 |
except Exception as e:
|
416 |
return f"β Error processing documents: {str(e)}"
|
417 |
|
418 |
-
def find_relevant_content(self, query: str, k: int =
|
419 |
-
"""
|
420 |
if not self.is_indexed:
|
421 |
-
return ""
|
422 |
|
423 |
try:
|
424 |
-
|
425 |
-
relevant_content = []
|
426 |
-
|
427 |
-
# Strategy 1: Semantic search using embeddings
|
428 |
query_embedding = self.embedder.encode([query])
|
429 |
faiss.normalize_L2(query_embedding)
|
430 |
|
431 |
scores, indices = self.index.search(query_embedding.astype('float32'), min(k, len(self.documents)))
|
432 |
|
433 |
-
|
434 |
for i, idx in enumerate(indices[0]):
|
435 |
-
if idx < len(self.documents) and scores[0][i] > 0.
|
436 |
-
|
437 |
-
|
438 |
-
# Strategy 2: Keyword matching in sentences
|
439 |
-
query_words = set(query_lower.split())
|
440 |
-
keyword_matches = []
|
441 |
-
|
442 |
-
for sentence in self.sentences:
|
443 |
-
sentence_words = set(sentence.lower().split())
|
444 |
-
overlap = len(query_words.intersection(sentence_words))
|
445 |
-
if overlap >= 2: # At least 2 word overlap
|
446 |
-
keyword_matches.append(sentence)
|
447 |
-
|
448 |
-
# Strategy 3: Pattern matching for specific question types
|
449 |
-
pattern_matches = []
|
450 |
|
451 |
-
|
452 |
-
# Look for names and identities
|
453 |
-
for sentence in self.sentences:
|
454 |
-
if re.search(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', sentence): # Name pattern
|
455 |
-
pattern_matches.append(sentence)
|
456 |
-
|
457 |
-
if any(word in query_lower for word in ['experience', 'work', 'job']):
|
458 |
-
# Look for experience-related content
|
459 |
-
for sentence in self.sentences:
|
460 |
-
if any(word in sentence.lower() for word in ['year', 'experience', 'work', 'company', 'role']):
|
461 |
-
pattern_matches.append(sentence)
|
462 |
-
|
463 |
-
if any(word in query_lower for word in ['skill', 'technology', 'tech']):
|
464 |
-
# Look for skills and technologies
|
465 |
-
for sentence in self.sentences:
|
466 |
-
if any(word in sentence.lower() for word in ['skill', 'technology', 'programming', 'software']):
|
467 |
-
pattern_matches.append(sentence)
|
468 |
-
|
469 |
-
# Combine all strategies
|
470 |
-
all_matches = list(set(semantic_matches + keyword_matches + pattern_matches))
|
471 |
-
|
472 |
-
# Sort by relevance (prefer shorter, more specific sentences)
|
473 |
-
all_matches.sort(key=lambda x: len(x.split()))
|
474 |
-
|
475 |
-
return '\n'.join(all_matches[:k]), all_matches[:k]
|
476 |
|
477 |
except Exception as e:
|
478 |
print(f"Error in content retrieval: {e}")
|
479 |
-
return ""
|
480 |
-
|
481 |
-
def generate_direct_answer(self, query: str, context: str) -> str:
|
482 |
-
"""Generate direct, relevant answers"""
|
483 |
-
if not context:
|
484 |
-
return "No relevant information found in the document."
|
485 |
-
|
486 |
-
query_lower = query.lower()
|
487 |
-
context_sentences = [s.strip() for s in context.split('\n') if s.strip()]
|
488 |
-
|
489 |
-
# Handle specific question types with direct extraction
|
490 |
-
if any(word in query_lower for word in ['name', 'who is']):
|
491 |
-
# Extract names
|
492 |
-
for sentence in context_sentences:
|
493 |
-
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', sentence)
|
494 |
-
if names:
|
495 |
-
return f"The person mentioned is {names[0]}."
|
496 |
-
|
497 |
-
if any(word in query_lower for word in ['experience', 'years']):
|
498 |
-
# Extract experience information
|
499 |
-
for sentence in context_sentences:
|
500 |
-
exp_match = re.search(r'(\d+)\s*(?:years?|yr)', sentence.lower())
|
501 |
-
if exp_match:
|
502 |
-
return f"The experience mentioned is {exp_match.group(1)} years. {sentence}"
|
503 |
-
|
504 |
-
if any(word in query_lower for word in ['skill', 'technology']):
|
505 |
-
# Extract skills
|
506 |
-
skills = []
|
507 |
-
for sentence in context_sentences:
|
508 |
-
# Look for programming languages, frameworks, etc.
|
509 |
-
tech_words = ['python', 'java', 'javascript', 'react', 'node', 'sql', 'aws', 'docker']
|
510 |
-
found_tech = [word for word in tech_words if word in sentence.lower()]
|
511 |
-
if found_tech:
|
512 |
-
skills.extend(found_tech)
|
513 |
-
|
514 |
-
if skills:
|
515 |
-
return f"Technologies/skills mentioned include: {', '.join(set(skills))}. {context_sentences[0] if context_sentences else ''}"
|
516 |
-
|
517 |
-
if any(word in query_lower for word in ['education', 'degree', 'university', 'college']):
|
518 |
-
# Extract education information
|
519 |
-
for sentence in context_sentences:
|
520 |
-
if any(word in sentence.lower() for word in ['degree', 'university', 'college', 'bachelor', 'master']):
|
521 |
-
return sentence
|
522 |
-
|
523 |
-
if any(word in query_lower for word in ['summary', 'about', 'overview']):
|
524 |
-
return self.document_summary
|
525 |
-
|
526 |
-
# For other questions, return the most relevant sentence
|
527 |
-
if context_sentences:
|
528 |
-
# Score sentences by query word overlap
|
529 |
-
query_words = set(query_lower.split())
|
530 |
-
scored_sentences = []
|
531 |
-
|
532 |
-
for sentence in context_sentences:
|
533 |
-
sentence_words = set(sentence.lower().split())
|
534 |
-
overlap = len(query_words.intersection(sentence_words))
|
535 |
-
scored_sentences.append((sentence, overlap))
|
536 |
-
|
537 |
-
# Sort by overlap and return best match
|
538 |
-
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
539 |
-
|
540 |
-
if scored_sentences and scored_sentences[0][1] > 0:
|
541 |
-
return scored_sentences[0][0]
|
542 |
-
else:
|
543 |
-
return context_sentences[0] # Return first relevant sentence
|
544 |
-
|
545 |
-
return "I found relevant content but couldn't extract a specific answer."
|
546 |
|
547 |
def answer_question(self, query: str) -> str:
|
548 |
-
"""
|
549 |
if not query.strip():
|
550 |
return "β Please ask a question!"
|
551 |
|
@@ -553,30 +482,95 @@ class SmartDocumentRAG:
|
|
553 |
return "π Please upload and process documents first!"
|
554 |
|
555 |
try:
|
556 |
-
# Handle summary requests directly
|
557 |
query_lower = query.lower()
|
558 |
-
|
|
|
|
|
559 |
return f"π **Document Summary:**\n\n{self.document_summary}"
|
560 |
|
561 |
-
#
|
562 |
-
context
|
563 |
|
564 |
if not context:
|
565 |
-
return "π No relevant information found. Try rephrasing your question
|
566 |
-
|
567 |
-
# Generate direct answer
|
568 |
-
answer = self.generate_direct_answer(query, context)
|
569 |
|
570 |
-
#
|
571 |
-
if
|
572 |
-
|
573 |
|
574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
|
576 |
except Exception as e:
|
577 |
return f"β Error processing question: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
|
579 |
-
# Initialize the
|
580 |
print("Initializing Enhanced Smart RAG System...")
|
581 |
rag_system = SmartDocumentRAG()
|
582 |
|
@@ -586,13 +580,13 @@ def create_interface():
|
|
586 |
gr.Markdown("""
|
587 |
# π§ Enhanced Document Q&A System
|
588 |
|
589 |
-
**
|
590 |
|
591 |
-
**
|
592 |
-
- π―
|
|
|
593 |
- π Direct answer extraction
|
594 |
-
- π Enhanced
|
595 |
-
- π Better handling of resumes, research papers, and business docs
|
596 |
""")
|
597 |
|
598 |
with gr.Tab("π€ Upload & Process"):
|
@@ -608,7 +602,7 @@ def create_interface():
|
|
608 |
|
609 |
with gr.Column():
|
610 |
process_status = gr.Textbox(
|
611 |
-
label="π Processing Status
|
612 |
lines=10,
|
613 |
interactive=False
|
614 |
)
|
@@ -619,12 +613,12 @@ def create_interface():
|
|
619 |
outputs=[process_status]
|
620 |
)
|
621 |
|
622 |
-
with gr.Tab("β
|
623 |
with gr.Row():
|
624 |
with gr.Column():
|
625 |
question_input = gr.Textbox(
|
626 |
label="π€ Ask Your Question",
|
627 |
-
placeholder="What is the person's name? / How many years of experience? / What
|
628 |
lines=3
|
629 |
)
|
630 |
|
@@ -634,7 +628,7 @@ def create_interface():
|
|
634 |
|
635 |
with gr.Column():
|
636 |
answer_output = gr.Textbox(
|
637 |
-
label="π‘
|
638 |
lines=8,
|
639 |
interactive=False
|
640 |
)
|
@@ -650,45 +644,6 @@ def create_interface():
|
|
650 |
inputs=[],
|
651 |
outputs=[answer_output]
|
652 |
)
|
653 |
-
|
654 |
-
gr.Markdown("""
|
655 |
-
### π‘ Try These Specific Questions:
|
656 |
-
|
657 |
-
**For Resumes:**
|
658 |
-
- "What is the person's name?"
|
659 |
-
- "How many years of experience do they have?"
|
660 |
-
- "What are their technical skills?"
|
661 |
-
- "What is their educational background?"
|
662 |
-
- "What companies have they worked for?"
|
663 |
-
|
664 |
-
**For Any Document:**
|
665 |
-
- "Summarize this document"
|
666 |
-
- "What is the main topic?"
|
667 |
-
- "List the key points"
|
668 |
-
""")
|
669 |
-
|
670 |
-
with gr.Tab("π§ System Info"):
|
671 |
-
gr.Markdown("""
|
672 |
-
### π Enhanced Features:
|
673 |
-
|
674 |
-
**Better Retrieval:**
|
675 |
-
- Semantic search using embeddings
|
676 |
-
- Keyword matching with context
|
677 |
-
- Pattern recognition for names, dates, skills
|
678 |
-
- Multi-level chunking (sentences + paragraphs)
|
679 |
-
|
680 |
-
**Improved Answers:**
|
681 |
-
- Direct information extraction
|
682 |
-
- Question-type specific processing
|
683 |
-
- Context-aware responses
|
684 |
-
- Relevance scoring and filtering
|
685 |
-
|
686 |
-
**Document Types:**
|
687 |
-
- β
Resumes (name, experience, skills extraction)
|
688 |
-
- β
Research papers (methodology, findings)
|
689 |
-
- β
Business documents (strategy, metrics)
|
690 |
-
- β
Technical documentation (specifications)
|
691 |
-
""")
|
692 |
|
693 |
return demo
|
694 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import faiss
|
6 |
import numpy as np
|
|
|
12 |
from typing import List, Optional, Dict, Tuple
|
13 |
import json
|
14 |
from collections import Counter
|
15 |
+
import warnings
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
|
18 |
class SmartDocumentRAG:
|
19 |
def __init__(self):
|
20 |
print("π Initializing Enhanced Smart RAG System...")
|
21 |
|
22 |
# Initialize better embedding model
|
23 |
+
self.embedder = SentenceTransformer('all-MiniLM-L6-v2') # Faster and good quality
|
24 |
+
print("β
Embedding model loaded")
|
25 |
|
26 |
+
# Initialize optimized LLM with better quantization
|
27 |
self.setup_llm()
|
28 |
|
29 |
# Document storage
|
|
|
34 |
self.raw_text = ""
|
35 |
self.document_type = "general"
|
36 |
self.document_summary = ""
|
37 |
+
self.sentence_embeddings = []
|
38 |
+
self.sentences = []
|
39 |
|
40 |
def setup_llm(self):
|
41 |
+
"""Setup optimized model with better quantization"""
|
42 |
try:
|
43 |
+
# Check CUDA availability
|
44 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
+
print(f"π§ Using device: {device}")
|
46 |
+
|
47 |
+
if device == "cuda":
|
48 |
+
self.setup_gpu_model()
|
49 |
+
else:
|
50 |
self.setup_cpu_model()
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"β Error loading models: {e}")
|
54 |
+
self.setup_fallback_model()
|
55 |
+
|
56 |
+
def setup_gpu_model(self):
|
57 |
+
"""Setup GPU model with proper quantization"""
|
58 |
+
try:
|
59 |
+
# Use Phi-2 - excellent for Q&A and reasoning
|
60 |
+
model_name = "microsoft/DialoGPT-medium"
|
61 |
+
|
62 |
+
# Better quantization config
|
63 |
+
quantization_config = BitsAndBytesConfig(
|
64 |
+
load_in_4bit=True,
|
65 |
+
bnb_4bit_compute_dtype=torch.float16,
|
66 |
+
bnb_4bit_use_double_quant=True,
|
67 |
+
bnb_4bit_quant_type="nf4",
|
68 |
+
bnb_4bit_quant_storage=torch.uint8
|
69 |
+
)
|
70 |
|
71 |
try:
|
72 |
+
# Try Flan-T5 first - excellent for Q&A
|
73 |
+
model_name = "google/flan-t5-base"
|
74 |
+
print(f"π€ Loading {model_name}...")
|
75 |
+
|
76 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
self.model = AutoModelForCausalLM.from_pretrained(
|
78 |
model_name,
|
79 |
+
quantization_config=quantization_config,
|
80 |
+
device_map="auto",
|
81 |
torch_dtype=torch.float16,
|
82 |
+
trust_remote_code=True
|
83 |
+
)
|
84 |
+
|
85 |
+
# Create pipeline for easier use
|
86 |
+
self.qa_pipeline = pipeline(
|
87 |
+
"text2text-generation",
|
88 |
+
model=self.model,
|
89 |
+
tokenizer=self.tokenizer,
|
90 |
+
max_length=512,
|
91 |
+
do_sample=True,
|
92 |
+
temperature=0.3,
|
93 |
+
top_p=0.9
|
94 |
+
)
|
95 |
+
|
96 |
+
print("β
Flan-T5 model loaded successfully")
|
97 |
+
self.model_type = "flan-t5"
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Flan-T5 failed, trying Phi-2: {e}")
|
101 |
+
# Try Phi-2 as backup
|
102 |
+
model_name = "microsoft/phi-2"
|
103 |
+
print(f"π€ Loading {model_name}...")
|
104 |
+
|
105 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
106 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
107 |
+
model_name,
|
108 |
+
quantization_config=quantization_config,
|
109 |
+
device_map="auto",
|
110 |
+
torch_dtype=torch.float16,
|
111 |
+
trust_remote_code=True
|
112 |
)
|
113 |
|
114 |
if self.tokenizer.pad_token is None:
|
115 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
116 |
|
117 |
+
print("β
Phi-2 model loaded successfully")
|
118 |
+
self.model_type = "phi-2"
|
|
|
|
|
|
|
119 |
|
120 |
except Exception as e:
|
121 |
+
print(f"β GPU models failed: {e}")
|
122 |
self.setup_cpu_model()
|
123 |
|
124 |
+
def setup_cpu_model(self):
|
125 |
+
"""Setup CPU-optimized model"""
|
126 |
try:
|
127 |
+
# Use DistilBERT for Q&A - much better than DialoGPT for this task
|
128 |
+
model_name = "distilbert-base-cased-distilled-squad"
|
129 |
+
print(f"π€ Loading CPU model: {model_name}")
|
130 |
+
|
131 |
+
self.qa_pipeline = pipeline(
|
132 |
+
"question-answering",
|
133 |
+
model=model_name,
|
134 |
+
tokenizer=model_name
|
135 |
)
|
136 |
+
self.model_type = "distilbert-qa"
|
137 |
+
print("β
DistilBERT Q&A model loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
except Exception as e:
|
140 |
+
print(f"β CPU model failed: {e}")
|
141 |
+
self.setup_fallback_model()
|
142 |
|
143 |
+
def setup_fallback_model(self):
|
144 |
+
"""Fallback to basic model"""
|
145 |
try:
|
146 |
+
print("π€ Loading fallback model...")
|
147 |
+
self.qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
148 |
+
self.model_type = "fallback"
|
149 |
+
print("β
Fallback model loaded")
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
print(f"β All models failed: {e}")
|
152 |
+
self.qa_pipeline = None
|
153 |
+
self.model_type = "none"
|
154 |
|
155 |
def detect_document_type(self, text: str) -> str:
|
156 |
"""Enhanced document type detection"""
|
157 |
text_lower = text.lower()
|
158 |
|
|
|
159 |
resume_patterns = [
|
160 |
'experience', 'skills', 'education', 'linkedin', 'email', 'phone',
|
161 |
'work experience', 'employment', 'resume', 'cv', 'curriculum vitae',
|
162 |
+
'internship', 'projects', 'achievements', 'career', 'profile', 'objective'
|
163 |
]
|
164 |
|
165 |
research_patterns = [
|
166 |
'abstract', 'introduction', 'methodology', 'conclusion', 'references',
|
167 |
'literature review', 'hypothesis', 'study', 'research', 'findings',
|
168 |
+
'data analysis', 'results', 'discussion', 'bibliography', 'journal'
|
169 |
]
|
170 |
|
171 |
business_patterns = [
|
172 |
'company', 'revenue', 'market', 'strategy', 'business', 'financial',
|
173 |
'quarter', 'profit', 'sales', 'growth', 'investment', 'stakeholder',
|
174 |
+
'operations', 'management', 'corporate', 'enterprise', 'budget'
|
175 |
]
|
176 |
|
177 |
technical_patterns = [
|
178 |
'implementation', 'algorithm', 'system', 'technical', 'specification',
|
179 |
'architecture', 'development', 'software', 'programming', 'api',
|
180 |
+
'database', 'framework', 'deployment', 'infrastructure', 'code'
|
181 |
]
|
182 |
|
|
|
183 |
def count_matches(patterns, text):
|
184 |
score = 0
|
185 |
for pattern in patterns:
|
186 |
+
count = text.count(pattern)
|
187 |
+
score += count * (2 if len(pattern.split()) > 1 else 1) # Weight phrases higher
|
188 |
return score
|
189 |
|
190 |
scores = {
|
|
|
195 |
}
|
196 |
|
197 |
max_score = max(scores.values())
|
198 |
+
if max_score > 5: # Higher threshold
|
199 |
return max(scores, key=scores.get)
|
200 |
return 'general'
|
201 |
|
202 |
def create_document_summary(self, text: str) -> str:
|
203 |
"""Enhanced document summary creation"""
|
204 |
try:
|
|
|
205 |
clean_text = re.sub(r'\s+', ' ', text).strip()
|
206 |
sentences = re.split(r'[.!?]+', clean_text)
|
207 |
+
sentences = [s.strip() for s in sentences if len(s.strip()) > 30]
|
208 |
|
209 |
if not sentences:
|
210 |
return "Document contains basic information."
|
211 |
|
212 |
+
# Use first few sentences and key information
|
213 |
if self.document_type == 'resume':
|
214 |
+
return self.extract_resume_summary(sentences, clean_text)
|
215 |
elif self.document_type == 'research':
|
216 |
return self.extract_research_summary(sentences)
|
217 |
elif self.document_type == 'business':
|
|
|
223 |
print(f"Summary creation error: {e}")
|
224 |
return "Document summary not available."
|
225 |
|
226 |
+
def extract_resume_summary(self, sentences: List[str], full_text: str) -> str:
|
227 |
+
"""Extract resume-specific summary with better name detection"""
|
228 |
+
summary_parts = []
|
229 |
+
|
230 |
+
# Extract name using multiple patterns
|
231 |
+
name = self.extract_name(full_text)
|
232 |
+
if name:
|
233 |
+
summary_parts.append(f"Resume of {name}")
|
234 |
+
|
235 |
+
# Extract role/title
|
236 |
+
role_patterns = [
|
237 |
+
r'(?:software|senior|junior|lead|principal)?\s*(?:engineer|developer|analyst|manager|designer|architect|consultant)',
|
238 |
+
r'(?:full stack|frontend|backend|data|ml|ai)\s*(?:engineer|developer)',
|
239 |
+
r'(?:product|project|technical)\s*manager'
|
240 |
+
]
|
241 |
+
|
242 |
+
for sentence in sentences[:5]:
|
243 |
+
for pattern in role_patterns:
|
244 |
+
matches = re.findall(pattern, sentence.lower())
|
245 |
+
if matches:
|
246 |
+
summary_parts.append(f"working as {matches[0].title()}")
|
247 |
+
break
|
248 |
+
|
249 |
+
# Extract experience
|
250 |
+
exp_match = re.search(r'(\d+)[\+\-\s]*(?:years?|yrs?)\s*(?:of\s*)?(?:experience|exp)', full_text.lower())
|
251 |
+
if exp_match:
|
252 |
+
summary_parts.append(f"with {exp_match.group(1)}+ years of experience")
|
253 |
+
|
254 |
+
return '. '.join(summary_parts) + '.' if summary_parts else "Professional resume with career details."
|
255 |
+
|
256 |
+
def extract_name(self, text: str) -> str:
|
257 |
+
"""Extract name from document using multiple strategies"""
|
258 |
+
# Strategy 1: Look for name patterns at the beginning
|
259 |
+
lines = text.split('\n')[:10] # First 10 lines
|
260 |
+
|
261 |
+
for line in lines:
|
262 |
+
line = line.strip()
|
263 |
+
if len(line) < 50 and len(line) > 3: # Likely a header line
|
264 |
+
# Check if it looks like a name
|
265 |
+
name_match = re.match(r'^([A-Z][a-z]+\s+[A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)(?:\s|$)', line)
|
266 |
+
if name_match:
|
267 |
+
return name_match.group(1)
|
268 |
+
|
269 |
+
# Strategy 2: Look for "Name:" pattern
|
270 |
+
name_patterns = [
|
271 |
+
r'(?:name|full name):\s*([A-Z][a-z]+\s+[A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
|
272 |
+
r'^([A-Z][a-z]+\s+[A-Z][a-z]+)(?:\s*\n|\s*email|\s*phone|\s*linkedin)',
|
273 |
+
]
|
274 |
+
|
275 |
+
for pattern in name_patterns:
|
276 |
+
match = re.search(pattern, text, re.MULTILINE | re.IGNORECASE)
|
277 |
+
if match:
|
278 |
+
return match.group(1)
|
279 |
+
|
280 |
+
return ""
|
281 |
|
282 |
def extract_research_summary(self, sentences: List[str]) -> str:
|
283 |
"""Extract research paper summary"""
|
284 |
+
# Look for abstract or introduction
|
285 |
+
for sentence in sentences[:5]:
|
286 |
+
if any(word in sentence.lower() for word in ['abstract', 'study', 'research', 'paper']):
|
287 |
+
return sentence[:200] + ('...' if len(sentence) > 200 else '')
|
288 |
+
|
289 |
+
return "Research document with academic content."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
def extract_business_summary(self, sentences: List[str]) -> str:
|
292 |
"""Extract business document summary"""
|
293 |
+
for sentence in sentences[:3]:
|
294 |
+
if any(word in sentence.lower() for word in ['company', 'business', 'organization']):
|
295 |
+
return sentence[:200] + ('...' if len(sentence) > 200 else '')
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
return "Business document with organizational information."
|
|
|
|
|
298 |
|
299 |
def extract_general_summary(self, sentences: List[str]) -> str:
|
300 |
"""Extract general document summary"""
|
301 |
+
return sentences[0][:200] + ('...' if len(sentences[0]) > 200 else '') if sentences else "General document."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
def extract_text_from_file(self, file_path: str) -> str:
|
304 |
+
"""Enhanced text extraction"""
|
305 |
try:
|
306 |
file_extension = os.path.splitext(file_path)[1].lower()
|
307 |
|
|
|
318 |
return f"Error reading file: {str(e)}"
|
319 |
|
320 |
def extract_from_pdf(self, file_path: str) -> str:
|
321 |
+
"""Enhanced PDF extraction"""
|
322 |
text = ""
|
323 |
try:
|
324 |
with open(file_path, 'rb') as file:
|
325 |
pdf_reader = PyPDF2.PdfReader(file)
|
326 |
+
for page in pdf_reader.pages:
|
327 |
page_text = page.extract_text()
|
328 |
if page_text.strip():
|
329 |
+
# Better text cleaning
|
330 |
page_text = re.sub(r'\s+', ' ', page_text)
|
331 |
+
page_text = re.sub(r'([a-z])([A-Z])', r'\1 \2', page_text) # Fix merged words
|
332 |
text += f"{page_text}\n"
|
333 |
except Exception as e:
|
334 |
text = f"Error reading PDF: {str(e)}"
|
|
|
353 |
for encoding in encodings:
|
354 |
try:
|
355 |
with open(file_path, 'r', encoding=encoding) as file:
|
356 |
+
return file.read().strip()
|
|
|
|
|
|
|
357 |
except UnicodeDecodeError:
|
358 |
continue
|
359 |
except Exception as e:
|
360 |
return f"Error reading TXT: {str(e)}"
|
361 |
|
362 |
+
return "Error: Could not decode file"
|
363 |
|
364 |
def enhanced_chunk_text(self, text: str) -> List[Dict]:
|
365 |
+
"""Enhanced chunking with better overlap"""
|
366 |
if not text.strip():
|
367 |
return []
|
368 |
|
369 |
chunks = []
|
370 |
|
371 |
+
# Split into sentences
|
372 |
sentences = re.split(r'[.!?]+', text)
|
373 |
+
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
|
|
|
|
|
374 |
self.sentences = sentences
|
375 |
|
376 |
# Create overlapping chunks
|
377 |
+
chunk_size = 4 # sentences per chunk
|
378 |
+
overlap = 2 # sentence overlap
|
379 |
|
380 |
for i in range(0, len(sentences), chunk_size - overlap):
|
381 |
chunk_sentences = sentences[i:i + chunk_size]
|
382 |
if chunk_sentences:
|
383 |
+
chunk_text = '. '.join(chunk_sentences) + '.'
|
384 |
+
chunks.append({
|
385 |
+
'text': chunk_text,
|
386 |
+
'sentence_indices': list(range(i, min(i + chunk_size, len(sentences)))),
|
387 |
+
'doc_type': self.document_type
|
388 |
+
})
|
|
|
389 |
|
390 |
return chunks
|
391 |
|
|
|
426 |
self.documents = [chunk['text'] for chunk in chunk_data]
|
427 |
self.document_metadata = chunk_data
|
428 |
|
429 |
+
# Create embeddings
|
430 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
431 |
embeddings = self.embedder.encode(self.documents, show_progress_bar=False)
|
432 |
|
|
|
|
|
|
|
|
|
|
|
433 |
# Build FAISS index
|
434 |
dimension = embeddings.shape[1]
|
435 |
self.index = faiss.IndexFlatIP(dimension)
|
|
|
443 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
444 |
f"π Files: {', '.join(processed_files)}\n" + \
|
445 |
f"π Document Type: {self.document_type.title()}\n" + \
|
446 |
+
f"π Created {len(self.documents)} chunks\n" + \
|
447 |
f"π Summary: {self.document_summary}\n" + \
|
448 |
+
f"π Ready for Q&A!"
|
449 |
|
450 |
except Exception as e:
|
451 |
return f"β Error processing documents: {str(e)}"
|
452 |
|
453 |
+
def find_relevant_content(self, query: str, k: int = 3) -> str:
|
454 |
+
"""Improved content retrieval"""
|
455 |
if not self.is_indexed:
|
456 |
+
return ""
|
457 |
|
458 |
try:
|
459 |
+
# Semantic search
|
|
|
|
|
|
|
460 |
query_embedding = self.embedder.encode([query])
|
461 |
faiss.normalize_L2(query_embedding)
|
462 |
|
463 |
scores, indices = self.index.search(query_embedding.astype('float32'), min(k, len(self.documents)))
|
464 |
|
465 |
+
relevant_chunks = []
|
466 |
for i, idx in enumerate(indices[0]):
|
467 |
+
if idx < len(self.documents) and scores[0][i] > 0.1: # Lower threshold
|
468 |
+
relevant_chunks.append(self.documents[idx])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
|
470 |
+
return ' '.join(relevant_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
472 |
except Exception as e:
|
473 |
print(f"Error in content retrieval: {e}")
|
474 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
def answer_question(self, query: str) -> str:
|
477 |
+
"""Enhanced question answering with better model usage"""
|
478 |
if not query.strip():
|
479 |
return "β Please ask a question!"
|
480 |
|
|
|
482 |
return "π Please upload and process documents first!"
|
483 |
|
484 |
try:
|
|
|
485 |
query_lower = query.lower()
|
486 |
+
|
487 |
+
# Handle summary requests
|
488 |
+
if any(word in query_lower for word in ['summary', 'summarize', 'about', 'overview']):
|
489 |
return f"π **Document Summary:**\n\n{self.document_summary}"
|
490 |
|
491 |
+
# Get relevant content
|
492 |
+
context = self.find_relevant_content(query, k=3)
|
493 |
|
494 |
if not context:
|
495 |
+
return "π No relevant information found. Try rephrasing your question."
|
|
|
|
|
|
|
496 |
|
497 |
+
# Use appropriate model for answering
|
498 |
+
if self.qa_pipeline is None:
|
499 |
+
return self.extract_direct_answer(query, context)
|
500 |
|
501 |
+
try:
|
502 |
+
if self.model_type == "distilbert-qa" or self.model_type == "fallback":
|
503 |
+
# Use Q&A pipeline
|
504 |
+
result = self.qa_pipeline(question=query, context=context)
|
505 |
+
answer = result['answer']
|
506 |
+
confidence = result['score']
|
507 |
+
|
508 |
+
if confidence > 0.1: # Reasonable confidence
|
509 |
+
return f"**Answer:** {answer}\n\n**Context:** {context[:200]}..."
|
510 |
+
else:
|
511 |
+
return self.extract_direct_answer(query, context)
|
512 |
+
|
513 |
+
elif self.model_type == "flan-t5":
|
514 |
+
# Use text generation pipeline
|
515 |
+
prompt = f"Answer the question based on the context.\nContext: {context}\nQuestion: {query}\nAnswer:"
|
516 |
+
result = self.qa_pipeline(prompt, max_length=200, num_return_sequences=1)
|
517 |
+
answer = result[0]['generated_text'].replace(prompt, '').strip()
|
518 |
+
return f"**Answer:** {answer}"
|
519 |
+
|
520 |
+
else:
|
521 |
+
return self.extract_direct_answer(query, context)
|
522 |
+
|
523 |
+
except Exception as e:
|
524 |
+
print(f"Model inference error: {e}")
|
525 |
+
return self.extract_direct_answer(query, context)
|
526 |
|
527 |
except Exception as e:
|
528 |
return f"β Error processing question: {str(e)}"
|
529 |
+
|
530 |
+
def extract_direct_answer(self, query: str, context: str) -> str:
|
531 |
+
"""Direct answer extraction as fallback"""
|
532 |
+
query_lower = query.lower()
|
533 |
+
|
534 |
+
# Name extraction
|
535 |
+
if any(word in query_lower for word in ['name', 'who is', 'who']):
|
536 |
+
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', context)
|
537 |
+
if names:
|
538 |
+
return f"**Name:** {names[0]}"
|
539 |
+
|
540 |
+
# Experience extraction
|
541 |
+
if any(word in query_lower for word in ['experience', 'years']):
|
542 |
+
exp_matches = re.findall(r'(\d+)[\+\-\s]*(?:years?|yrs?)', context.lower())
|
543 |
+
if exp_matches:
|
544 |
+
return f"**Experience:** {exp_matches[0]} years"
|
545 |
+
|
546 |
+
# Skills extraction
|
547 |
+
if any(word in query_lower for word in ['skill', 'technology', 'tech']):
|
548 |
+
# Common tech skills
|
549 |
+
tech_patterns = [
|
550 |
+
r'\b(?:Python|Java|JavaScript|React|Node|SQL|AWS|Docker|Kubernetes|Git)\b',
|
551 |
+
r'\b(?:HTML|CSS|Angular|Vue|Spring|Django|Flask|MongoDB|PostgreSQL)\b'
|
552 |
+
]
|
553 |
+
skills = []
|
554 |
+
for pattern in tech_patterns:
|
555 |
+
skills.extend(re.findall(pattern, context, re.IGNORECASE))
|
556 |
+
|
557 |
+
if skills:
|
558 |
+
return f"**Skills mentioned:** {', '.join(set(skills))}"
|
559 |
+
|
560 |
+
# Education extraction
|
561 |
+
if any(word in query_lower for word in ['education', 'degree', 'university']):
|
562 |
+
edu_matches = re.findall(r'(?:Bachelor|Master|PhD|B\.?S\.?|M\.?S\.?|B\.?A\.?|M\.?A\.?).*?(?:in|of)\s+([^.]+)', context)
|
563 |
+
if edu_matches:
|
564 |
+
return f"**Education:** {edu_matches[0]}"
|
565 |
+
|
566 |
+
# Return first relevant sentence
|
567 |
+
sentences = [s.strip() for s in context.split('.') if s.strip()]
|
568 |
+
if sentences:
|
569 |
+
return f"**Answer:** {sentences[0]}"
|
570 |
+
|
571 |
+
return "I found relevant content but couldn't extract a specific answer."
|
572 |
|
573 |
+
# Initialize the system
|
574 |
print("Initializing Enhanced Smart RAG System...")
|
575 |
rag_system = SmartDocumentRAG()
|
576 |
|
|
|
580 |
gr.Markdown("""
|
581 |
# π§ Enhanced Document Q&A System
|
582 |
|
583 |
+
**Optimized with Better Models & Quantization!**
|
584 |
|
585 |
+
**Features:**
|
586 |
+
- π― Flan-T5 or DistilBERT for accurate Q&A
|
587 |
+
- β‘ 4-bit quantization for GPU efficiency
|
588 |
- π Direct answer extraction
|
589 |
+
- π Enhanced semantic search
|
|
|
590 |
""")
|
591 |
|
592 |
with gr.Tab("π€ Upload & Process"):
|
|
|
602 |
|
603 |
with gr.Column():
|
604 |
process_status = gr.Textbox(
|
605 |
+
label="π Processing Status",
|
606 |
lines=10,
|
607 |
interactive=False
|
608 |
)
|
|
|
613 |
outputs=[process_status]
|
614 |
)
|
615 |
|
616 |
+
with gr.Tab("β Q&A"):
|
617 |
with gr.Row():
|
618 |
with gr.Column():
|
619 |
question_input = gr.Textbox(
|
620 |
label="π€ Ask Your Question",
|
621 |
+
placeholder="What is the person's name? / How many years of experience? / What skills do they have?",
|
622 |
lines=3
|
623 |
)
|
624 |
|
|
|
628 |
|
629 |
with gr.Column():
|
630 |
answer_output = gr.Textbox(
|
631 |
+
label="π‘ Answer",
|
632 |
lines=8,
|
633 |
interactive=False
|
634 |
)
|
|
|
644 |
inputs=[],
|
645 |
outputs=[answer_output]
|
646 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
|
648 |
return demo
|
649 |
|