Miroslav Purkrabek
add code
a249588
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import types
from typing import Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmdet.utils import ConfigType, reduce_mean
from mmengine.model import BaseModule, bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor
from mmpose.evaluation.functional import nms_torch
from mmpose.models.utils import (GAUEncoder, SinePositionalEncoding,
filter_scores_and_topk)
from mmpose.registry import MODELS
from mmpose.structures.bbox import bbox_xyxy2cs
from mmpose.utils.typing import Features, OptSampleList, Predictions
from .yoloxpose_head import YOLOXPoseHead
EPS = 1e-8
class RTMOHeadModule(BaseModule):
"""RTMO head module for one-stage human pose estimation.
This module predicts classification scores, bounding boxes, keypoint
offsets and visibilities from multi-level feature maps.
Args:
num_classes (int): Number of categories excluding the background
category.
num_keypoints (int): Number of keypoints defined for one instance.
in_channels (int): Number of channels in the input feature maps.
cls_feat_channels (int): Number of channels in the classification score
and objectness prediction branch. Defaults to 256.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_groups (int): Group number of group convolution layers in keypoint
regression branch. Defaults to 8.
channels_per_group (int): Number of channels for each group of group
convolution layers in keypoint regression branch. Defaults to 32.
featmap_strides (Sequence[int]): Downsample factor of each feature
map. Defaults to [8, 16, 32].
conv_bias (bool or str): If specified as `auto`, it will be decided
by the norm_cfg. Bias of conv will be set as True if `norm_cfg`
is None, otherwise False. Defaults to "auto".
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(
self,
num_keypoints: int,
in_channels: int,
num_classes: int = 1,
widen_factor: float = 1.0,
cls_feat_channels: int = 256,
stacked_convs: int = 2,
num_groups=8,
channels_per_group=36,
pose_vec_channels=-1,
featmap_strides: Sequence[int] = [8, 16, 32],
conv_bias: Union[bool, str] = 'auto',
conv_cfg: Optional[ConfigType] = None,
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: Optional[ConfigType] = None,
):
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.cls_feat_channels = int(cls_feat_channels * widen_factor)
self.stacked_convs = stacked_convs
assert conv_bias == 'auto' or isinstance(conv_bias, bool)
self.conv_bias = conv_bias
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.featmap_strides = featmap_strides
self.in_channels = int(in_channels * widen_factor)
self.num_keypoints = num_keypoints
self.num_groups = num_groups
self.channels_per_group = int(widen_factor * channels_per_group)
self.pose_vec_channels = pose_vec_channels
self._init_layers()
def _init_layers(self):
"""Initialize heads for all level feature maps."""
self._init_cls_branch()
self._init_pose_branch()
def _init_cls_branch(self):
"""Initialize classification branch for all level feature maps."""
self.conv_cls = nn.ModuleList()
for _ in self.featmap_strides:
stacked_convs = []
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.cls_feat_channels
stacked_convs.append(
ConvModule(
chn,
self.cls_feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
bias=self.conv_bias))
self.conv_cls.append(nn.Sequential(*stacked_convs))
# output layers
self.out_cls = nn.ModuleList()
for _ in self.featmap_strides:
self.out_cls.append(
nn.Conv2d(self.cls_feat_channels, self.num_classes, 1))
def _init_pose_branch(self):
"""Initialize pose prediction branch for all level feature maps."""
self.conv_pose = nn.ModuleList()
out_chn = self.num_groups * self.channels_per_group
for _ in self.featmap_strides:
stacked_convs = []
for i in range(self.stacked_convs * 2):
chn = self.in_channels if i == 0 else out_chn
groups = 1 if i == 0 else self.num_groups
stacked_convs.append(
ConvModule(
chn,
out_chn,
3,
stride=1,
padding=1,
groups=groups,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
bias=self.conv_bias))
self.conv_pose.append(nn.Sequential(*stacked_convs))
# output layers
self.out_bbox = nn.ModuleList()
self.out_kpt_reg = nn.ModuleList()
self.out_kpt_vis = nn.ModuleList()
for _ in self.featmap_strides:
self.out_bbox.append(nn.Conv2d(out_chn, 4, 1))
self.out_kpt_reg.append(
nn.Conv2d(out_chn, self.num_keypoints * 2, 1))
self.out_kpt_vis.append(nn.Conv2d(out_chn, self.num_keypoints, 1))
if self.pose_vec_channels > 0:
self.out_pose = nn.ModuleList()
for _ in self.featmap_strides:
self.out_pose.append(
nn.Conv2d(out_chn, self.pose_vec_channels, 1))
def init_weights(self):
"""Initialize weights of the head.
Use prior in model initialization to improve stability.
"""
super().init_weights()
bias_init = bias_init_with_prob(0.01)
for conv_cls in self.out_cls:
conv_cls.bias.data.fill_(bias_init)
def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
cls_scores (List[Tensor]): Classification scores for each level.
bbox_preds (List[Tensor]): Bounding box predictions for each level.
kpt_offsets (List[Tensor]): Keypoint offsets for each level.
kpt_vis (List[Tensor]): Keypoint visibilities for each level.
pose_feats (List[Tensor]): Pose features for each level.
"""
cls_scores, bbox_preds = [], []
kpt_offsets, kpt_vis = [], []
pose_feats = []
for i in range(len(x)):
cls_feat, reg_feat = x[i].split(x[i].size(1) // 2, 1)
cls_feat = self.conv_cls[i](cls_feat)
reg_feat = self.conv_pose[i](reg_feat)
cls_scores.append(self.out_cls[i](cls_feat))
bbox_preds.append(self.out_bbox[i](reg_feat))
if self.training:
# `kpt_offsets` generates the proxy poses for positive
# sample selection during training
kpt_offsets.append(self.out_kpt_reg[i](reg_feat))
kpt_vis.append(self.out_kpt_vis[i](reg_feat))
if self.pose_vec_channels > 0:
pose_feats.append(self.out_pose[i](reg_feat))
else:
pose_feats.append(reg_feat)
return cls_scores, bbox_preds, kpt_offsets, kpt_vis, pose_feats
class DCC(BaseModule):
"""Dynamic Coordinate Classifier for One-stage Pose Estimation.
Args:
in_channels (int): Number of input feature map channels.
num_keypoints (int): Number of keypoints for pose estimation.
feat_channels (int): Number of feature channels.
num_bins (Tuple[int, int]): Tuple representing the number of bins in
x and y directions.
spe_channels (int): Number of channels for Sine Positional Encoding.
Defaults to 128.
spe_temperature (float): Temperature for Sine Positional Encoding.
Defaults to 300.0.
gau_cfg (dict, optional): Configuration for Gated Attention Unit.
"""
def __init__(
self,
in_channels: int,
num_keypoints: int,
feat_channels: int,
num_bins: Tuple[int, int],
spe_channels: int = 128,
spe_temperature: float = 300.0,
gau_cfg: Optional[dict] = dict(
s=128,
expansion_factor=2,
dropout_rate=0.0,
drop_path=0.0,
act_fn='SiLU',
use_rel_bias=False,
pos_enc='add'),
):
super().__init__()
self.in_channels = in_channels
self.num_keypoints = num_keypoints
self.feat_channels = feat_channels
self.num_bins = num_bins
self.gau_cfg = gau_cfg
self.spe = SinePositionalEncoding(
out_channels=spe_channels,
temperature=spe_temperature,
)
self.spe_feat_channels = spe_channels
self._build_layers()
self._build_basic_bins()
def _build_layers(self):
"""Builds layers for the model."""
# GAU encoder
if self.gau_cfg is not None:
gau_cfg = self.gau_cfg.copy()
gau_cfg['in_token_dims'] = self.feat_channels
gau_cfg['out_token_dims'] = self.feat_channels
self.gau = GAUEncoder(**gau_cfg)
if gau_cfg.get('pos_enc', 'none') in ('add', 'rope'):
self.pos_enc = nn.Parameter(
torch.randn(self.num_keypoints, gau_cfg['s']))
# fully-connected layers to convert pose feats to keypoint feats
pose_to_kpts = [
nn.Linear(self.in_channels,
self.feat_channels * self.num_keypoints),
nn.BatchNorm1d(self.feat_channels * self.num_keypoints)
]
self.pose_to_kpts = nn.Sequential(*pose_to_kpts)
# adapter layers for dynamic encodings
self.x_fc = nn.Linear(self.spe_feat_channels, self.feat_channels)
self.y_fc = nn.Linear(self.spe_feat_channels, self.feat_channels)
# fully-connected layers to predict sigma
self.sigma_fc = nn.Sequential(
nn.Linear(self.in_channels, self.num_keypoints), nn.Sigmoid(),
Scale(0.1))
def _build_basic_bins(self):
"""Builds basic bin coordinates for x and y."""
self.register_buffer('y_bins',
torch.linspace(-0.5, 0.5, self.num_bins[1]))
self.register_buffer('x_bins',
torch.linspace(-0.5, 0.5, self.num_bins[0]))
def _apply_softmax(self, x_hms, y_hms):
"""Apply softmax on 1-D heatmaps.
Args:
x_hms (Tensor): 1-D heatmap in x direction.
y_hms (Tensor): 1-D heatmap in y direction.
Returns:
tuple: A tuple containing the normalized x and y heatmaps.
"""
x_hms = x_hms.clamp(min=-5e4, max=5e4)
y_hms = y_hms.clamp(min=-5e4, max=5e4)
pred_x = x_hms - x_hms.max(dim=-1, keepdims=True).values.detach()
pred_y = y_hms - y_hms.max(dim=-1, keepdims=True).values.detach()
exp_x, exp_y = pred_x.exp(), pred_y.exp()
prob_x = exp_x / (exp_x.sum(dim=-1, keepdims=True) + EPS)
prob_y = exp_y / (exp_y.sum(dim=-1, keepdims=True) + EPS)
return prob_x, prob_y
def _get_bin_enc(self, bbox_cs, grids):
"""Calculate dynamic bin encodings for expanded bounding box.
This function computes dynamic bin allocations and encodings based
on the expanded bounding box center-scale (bbox_cs) and grid values.
The process involves adjusting the bins according to the scale and
center of the bounding box and then applying a sinusoidal positional
encoding (spe) followed by a fully connected layer (fc) to obtain the
final x and y bin encodings.
Args:
bbox_cs (Tensor): A tensor representing the center and scale of
bounding boxes.
grids (Tensor): A tensor representing the grid coordinates.
Returns:
tuple: A tuple containing the encoded x and y bins.
"""
center, scale = bbox_cs.split(2, dim=-1)
center = center - grids
x_bins, y_bins = self.x_bins, self.y_bins
# dynamic bin allocation
x_bins = x_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 0:1] + center[..., 0:1]
y_bins = y_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 1:2] + center[..., 1:2]
# dynamic bin encoding
x_bins_enc = self.x_fc(self.spe(position=x_bins))
y_bins_enc = self.y_fc(self.spe(position=y_bins))
return x_bins_enc, y_bins_enc
def _pose_feats_to_heatmaps(self, pose_feats, x_bins_enc, y_bins_enc):
"""Convert pose features to heatmaps using x and y bin encodings.
This function transforms the given pose features into keypoint
features and then generates x and y heatmaps based on the x and y
bin encodings. If Gated attention unit (gau) is used, it applies it
to the keypoint features. The heatmaps are generated using matrix
multiplication of pose features and bin encodings.
Args:
pose_feats (Tensor): The pose features tensor.
x_bins_enc (Tensor): The encoded x bins tensor.
y_bins_enc (Tensor): The encoded y bins tensor.
Returns:
tuple: A tuple containing the x and y heatmaps.
"""
kpt_feats = self.pose_to_kpts(pose_feats)
kpt_feats = kpt_feats.reshape(*kpt_feats.shape[:-1],
self.num_keypoints, self.feat_channels)
if hasattr(self, 'gau'):
kpt_feats = self.gau(
kpt_feats, pos_enc=getattr(self, 'pos_enc', None))
x_hms = torch.matmul(kpt_feats,
x_bins_enc.transpose(-1, -2).contiguous())
y_hms = torch.matmul(kpt_feats,
y_bins_enc.transpose(-1, -2).contiguous())
return x_hms, y_hms
def _decode_xy_heatmaps(self, x_hms, y_hms, bbox_cs):
"""Decode x and y heatmaps to obtain coordinates.
This function decodes x and y heatmaps to obtain the corresponding
coordinates. It adjusts the x and y bins based on the bounding box
center and scale, and then computes the weighted sum of these bins
with the heatmaps to derive the x and y coordinates.
Args:
x_hms (Tensor): The normalized x heatmaps tensor.
y_hms (Tensor): The normalized y heatmaps tensor.
bbox_cs (Tensor): The bounding box center-scale tensor.
Returns:
Tensor: A tensor of decoded x and y coordinates.
"""
center, scale = bbox_cs.split(2, dim=-1)
x_bins, y_bins = self.x_bins, self.y_bins
x_bins = x_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 0:1] + center[..., 0:1]
y_bins = y_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 1:2] + center[..., 1:2]
x = (x_hms * x_bins.unsqueeze(1)).sum(dim=-1)
y = (y_hms * y_bins.unsqueeze(1)).sum(dim=-1)
return torch.stack((x, y), dim=-1)
def generate_target_heatmap(self, kpt_targets, bbox_cs, sigmas, areas):
"""Generate target heatmaps for keypoints based on bounding box.
This function calculates x and y bins adjusted by bounding box center
and scale. It then computes distances from keypoint targets to these
bins and normalizes these distances based on the areas and sigmas.
Finally, it uses these distances to generate heatmaps for x and y
coordinates under assumption of laplacian error.
Args:
kpt_targets (Tensor): Keypoint targets tensor.
bbox_cs (Tensor): Bounding box center-scale tensor.
sigmas (Tensor): Learned deviation of grids.
areas (Tensor): Areas of GT instance assigned to grids.
Returns:
tuple: A tuple containing the x and y heatmaps.
"""
# calculate the error of each bin from the GT keypoint coordinates
center, scale = bbox_cs.split(2, dim=-1)
x_bins = self.x_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 0:1] + center[..., 0:1]
y_bins = self.y_bins.view(*((1,) * (scale.ndim-1)), -1) \
* scale[..., 1:2] + center[..., 1:2]
dist_x = torch.abs(kpt_targets.narrow(2, 0, 1) - x_bins.unsqueeze(1))
dist_y = torch.abs(kpt_targets.narrow(2, 1, 1) - y_bins.unsqueeze(1))
# normalize
areas = areas.pow(0.5).clip(min=1).reshape(-1, 1, 1)
sigmas = sigmas.clip(min=1e-3).unsqueeze(2)
dist_x = dist_x / areas / sigmas
dist_y = dist_y / areas / sigmas
hm_x = torch.exp(-dist_x / 2) / sigmas
hm_y = torch.exp(-dist_y / 2) / sigmas
return hm_x, hm_y
def forward_train(self, pose_feats, bbox_cs, grids):
"""Forward pass for training.
This function processes pose features during training. It computes
sigmas using a fully connected layer, generates bin encodings,
creates heatmaps from pose features, applies softmax to the heatmaps,
and then decodes the heatmaps to get pose predictions.
Args:
pose_feats (Tensor): The pose features tensor.
bbox_cs (Tensor): The bounding box in the format of center & scale.
grids (Tensor): The grid coordinates.
Returns:
tuple: A tuple containing pose predictions, heatmaps, and sigmas.
"""
sigmas = self.sigma_fc(pose_feats)
x_bins_enc, y_bins_enc = self._get_bin_enc(bbox_cs, grids)
x_hms, y_hms = self._pose_feats_to_heatmaps(pose_feats, x_bins_enc,
y_bins_enc)
x_hms, y_hms = self._apply_softmax(x_hms, y_hms)
pose_preds = self._decode_xy_heatmaps(x_hms, y_hms, bbox_cs)
return pose_preds, (x_hms, y_hms), sigmas
@torch.no_grad()
def forward_test(self, pose_feats, bbox_cs, grids):
"""Forward pass for testing.
This function processes pose features during testing. It generates
bin encodings, creates heatmaps from pose features, and then decodes
the heatmaps to get pose predictions.
Args:
pose_feats (Tensor): The pose features tensor.
bbox_cs (Tensor): The bounding box in the format of center & scale.
grids (Tensor): The grid coordinates.
Returns:
Tensor: Pose predictions tensor.
"""
x_bins_enc, y_bins_enc = self._get_bin_enc(bbox_cs, grids)
x_hms, y_hms = self._pose_feats_to_heatmaps(pose_feats, x_bins_enc,
y_bins_enc)
x_hms, y_hms = self._apply_softmax(x_hms, y_hms)
pose_preds = self._decode_xy_heatmaps(x_hms, y_hms, bbox_cs)
return pose_preds
def switch_to_deploy(self, test_cfg: Optional[Dict] = None):
if getattr(self, 'deploy', False):
return
self._convert_pose_to_kpts()
if hasattr(self, 'gau'):
self._convert_gau()
self._convert_forward_test()
self.deploy = True
def _convert_pose_to_kpts(self):
"""Merge BatchNorm layer into Fully Connected layer.
This function merges a BatchNorm layer into the associated Fully
Connected layer to avoid dimension mismatch during ONNX exportation. It
adjusts the weights and biases of the FC layer to incorporate the BN
layer's parameters, and then replaces the original FC layer with the
updated one.
"""
fc, bn = self.pose_to_kpts
# Calculate adjusted weights and biases
std = (bn.running_var + bn.eps).sqrt()
weight = fc.weight * (bn.weight / std).unsqueeze(1)
bias = bn.bias + (fc.bias - bn.running_mean) * bn.weight / std
# Update FC layer with adjusted parameters
fc.weight.data = weight.detach()
fc.bias.data = bias.detach()
self.pose_to_kpts = fc
def _convert_gau(self):
"""Reshape and merge tensors for Gated Attention Unit (GAU).
This function pre-processes the gamma and beta tensors of the GAU and
handles the position encoding if available. It also redefines the GAU's
forward method to incorporate these pre-processed tensors, optimizing
the computation process.
"""
# Reshape gamma and beta tensors in advance
gamma_q = self.gau.gamma[0].view(1, 1, 1, self.gau.gamma.size(-1))
gamma_k = self.gau.gamma[1].view(1, 1, 1, self.gau.gamma.size(-1))
beta_q = self.gau.beta[0].view(1, 1, 1, self.gau.beta.size(-1))
beta_k = self.gau.beta[1].view(1, 1, 1, self.gau.beta.size(-1))
# Adjust beta tensors with position encoding if available
if hasattr(self, 'pos_enc'):
pos_enc = self.pos_enc.reshape(1, 1, *self.pos_enc.shape)
beta_q = beta_q + pos_enc
beta_k = beta_k + pos_enc
gamma_q = gamma_q.detach().cpu()
gamma_k = gamma_k.detach().cpu()
beta_q = beta_q.detach().cpu()
beta_k = beta_k.detach().cpu()
@torch.no_grad()
def _forward(self, x, *args, **kwargs):
norm = torch.linalg.norm(x, dim=-1, keepdim=True) * self.ln.scale
x = x / norm.clamp(min=self.ln.eps) * self.ln.g
uv = self.uv(x)
uv = self.act_fn(uv)
u, v, base = torch.split(uv, [self.e, self.e, self.s], dim=-1)
if not torch.onnx.is_in_onnx_export():
q = base * gamma_q.to(base) + beta_q.to(base)
k = base * gamma_k.to(base) + beta_k.to(base)
else:
q = base * gamma_q + beta_q
k = base * gamma_k + beta_k
qk = torch.matmul(q, k.transpose(-1, -2))
kernel = torch.square(torch.nn.functional.relu(qk / self.sqrt_s))
x = u * torch.matmul(kernel, v)
x = self.o(x)
return x
self.gau._forward = types.MethodType(_forward, self.gau)
def _convert_forward_test(self):
"""Simplify the forward test process.
This function precomputes certain tensors and redefines the
forward_test method for the model. It includes steps for converting
pose features to keypoint features, performing dynamic bin encoding,
calculating 1-D heatmaps, and decoding these heatmaps to produce final
pose predictions.
"""
x_bins_ = self.x_bins.view(1, 1, -1).detach().cpu()
y_bins_ = self.y_bins.view(1, 1, -1).detach().cpu()
dim_t = self.spe.dim_t.view(1, 1, 1, -1).detach().cpu()
@torch.no_grad()
def _forward_test(self, pose_feats, bbox_cs, grids):
# step 1: pose features -> keypoint features
kpt_feats = self.pose_to_kpts(pose_feats)
kpt_feats = kpt_feats.reshape(*kpt_feats.shape[:-1],
self.num_keypoints,
self.feat_channels)
kpt_feats = self.gau(kpt_feats)
# step 2: dynamic bin encoding
center, scale = bbox_cs.split(2, dim=-1)
center = center - grids
if not torch.onnx.is_in_onnx_export():
x_bins = x_bins_.to(scale) * scale[..., 0:1] + center[..., 0:1]
y_bins = y_bins_.to(scale) * scale[..., 1:2] + center[..., 1:2]
freq_x = x_bins.unsqueeze(-1) / dim_t.to(scale)
freq_y = y_bins.unsqueeze(-1) / dim_t.to(scale)
else:
x_bins = x_bins_ * scale[..., 0:1] + center[..., 0:1]
y_bins = y_bins_ * scale[..., 1:2] + center[..., 1:2]
freq_x = x_bins.unsqueeze(-1) / dim_t
freq_y = y_bins.unsqueeze(-1) / dim_t
spe_x = torch.cat((freq_x.cos(), freq_x.sin()), dim=-1)
spe_y = torch.cat((freq_y.cos(), freq_y.sin()), dim=-1)
x_bins_enc = self.x_fc(spe_x).transpose(-1, -2).contiguous()
y_bins_enc = self.y_fc(spe_y).transpose(-1, -2).contiguous()
# step 3: calculate 1-D heatmaps
x_hms = torch.matmul(kpt_feats, x_bins_enc)
y_hms = torch.matmul(kpt_feats, y_bins_enc)
x_hms, y_hms = self._apply_softmax(x_hms, y_hms)
# step 4: decode 1-D heatmaps through integral
x = (x_hms * x_bins.unsqueeze(-2)).sum(dim=-1) + grids[..., 0:1]
y = (y_hms * y_bins.unsqueeze(-2)).sum(dim=-1) + grids[..., 1:2]
keypoints = torch.stack((x, y), dim=-1)
if not torch.onnx.is_in_onnx_export():
keypoints = keypoints.squeeze(0)
return keypoints
self.forward_test = types.MethodType(_forward_test, self)
@MODELS.register_module()
class RTMOHead(YOLOXPoseHead):
"""One-stage coordinate classification head introduced in RTMO (2023). This
head incorporates dynamic coordinate classification and YOLO structure for
precise keypoint localization.
Args:
num_keypoints (int): Number of keypoints to detect.
head_module_cfg (ConfigType): Configuration for the head module.
featmap_strides (Sequence[int]): Strides of feature maps.
Defaults to [16, 32].
num_classes (int): Number of object classes, defaults to 1.
use_aux_loss (bool): Indicates whether to use auxiliary loss,
defaults to False.
proxy_target_cc (bool): Indicates whether to use keypoints predicted
by coordinate classification as the targets for proxy regression
branch. Defaults to False.
assigner (ConfigType): Configuration for positive sample assigning
module.
prior_generator (ConfigType): Configuration for prior generation.
bbox_padding (float): Padding for bounding boxes, defaults to 1.25.
overlaps_power (float): Power factor adopted by overlaps before they
are assigned as targets in classification loss. Defaults to 1.0.
dcc_cfg (Optional[ConfigType]): Configuration for dynamic coordinate
classification module.
loss_cls (Optional[ConfigType]): Configuration for classification loss.
loss_bbox (Optional[ConfigType]): Configuration for bounding box loss.
loss_oks (Optional[ConfigType]): Configuration for OKS loss.
loss_vis (Optional[ConfigType]): Configuration for visibility loss.
loss_mle (Optional[ConfigType]): Configuration for MLE loss.
loss_bbox_aux (Optional[ConfigType]): Configuration for auxiliary
bounding box loss.
"""
def __init__(
self,
num_keypoints: int,
head_module_cfg: ConfigType,
featmap_strides: Sequence[int] = [16, 32],
num_classes: int = 1,
use_aux_loss: bool = False,
proxy_target_cc: bool = False,
assigner: ConfigType = None,
prior_generator: ConfigType = None,
bbox_padding: float = 1.25,
overlaps_power: float = 1.0,
dcc_cfg: Optional[ConfigType] = None,
loss_cls: Optional[ConfigType] = None,
loss_bbox: Optional[ConfigType] = None,
loss_oks: Optional[ConfigType] = None,
loss_vis: Optional[ConfigType] = None,
loss_mle: Optional[ConfigType] = None,
loss_bbox_aux: Optional[ConfigType] = None,
):
super().__init__(
num_keypoints=num_keypoints,
head_module_cfg=None,
featmap_strides=featmap_strides,
num_classes=num_classes,
use_aux_loss=use_aux_loss,
assigner=assigner,
prior_generator=prior_generator,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_oks=loss_oks,
loss_vis=loss_vis,
loss_bbox_aux=loss_bbox_aux,
overlaps_power=overlaps_power)
self.bbox_padding = bbox_padding
# override to ensure consistency
head_module_cfg['featmap_strides'] = featmap_strides
head_module_cfg['num_keypoints'] = num_keypoints
# build modules
self.head_module = RTMOHeadModule(**head_module_cfg)
self.proxy_target_cc = proxy_target_cc
if dcc_cfg is not None:
dcc_cfg['num_keypoints'] = num_keypoints
self.dcc = DCC(**dcc_cfg)
# build losses
if loss_mle is not None:
self.loss_mle = MODELS.build(loss_mle)
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Tuple[Tensor]): The multi-stage features
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
train_cfg (dict): The runtime config for training process.
Defaults to {}
Returns:
dict: A dictionary of losses.
"""
# 1. collect & reform predictions
cls_scores, bbox_preds, kpt_offsets, kpt_vis, pose_vecs = self.forward(
feats)
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device,
with_stride=True)
flatten_priors = torch.cat(mlvl_priors)
# flatten cls_scores, bbox_preds and objectness
flatten_cls_scores = self._flatten_predictions(cls_scores)
flatten_bbox_preds = self._flatten_predictions(bbox_preds)
flatten_objectness = torch.ones_like(
flatten_cls_scores).detach().narrow(-1, 0, 1) * 1e4
flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
flatten_kpt_vis = self._flatten_predictions(kpt_vis)
flatten_pose_vecs = self._flatten_predictions(pose_vecs)
flatten_bbox_decoded = self.decode_bbox(flatten_bbox_preds,
flatten_priors[..., :2],
flatten_priors[..., -1])
flatten_kpt_decoded = self.decode_kpt_reg(flatten_kpt_offsets,
flatten_priors[..., :2],
flatten_priors[..., -1])
# 2. generate targets
targets = self._get_targets(flatten_priors,
flatten_cls_scores.detach(),
flatten_objectness.detach(),
flatten_bbox_decoded.detach(),
flatten_kpt_decoded.detach(),
flatten_kpt_vis.detach(),
batch_data_samples)
pos_masks, cls_targets, obj_targets, obj_weights, \
bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets, \
vis_targets, vis_weights, pos_areas, pos_priors, group_indices, \
num_fg_imgs = targets
num_pos = torch.tensor(
sum(num_fg_imgs),
dtype=torch.float,
device=flatten_cls_scores.device)
num_total_samples = max(reduce_mean(num_pos), 1.0)
# 3. calculate loss
extra_info = dict(num_samples=num_total_samples)
losses = dict()
cls_preds_all = flatten_cls_scores.view(-1, self.num_classes)
if num_pos > 0:
# 3.1 bbox loss
bbox_preds = flatten_bbox_decoded.view(-1, 4)[pos_masks]
losses['loss_bbox'] = self.loss_bbox(
bbox_preds, bbox_targets) / num_total_samples
if self.use_aux_loss:
if hasattr(self, 'loss_bbox_aux'):
bbox_preds_raw = flatten_bbox_preds.view(-1, 4)[pos_masks]
losses['loss_bbox_aux'] = self.loss_bbox_aux(
bbox_preds_raw, bbox_aux_targets) / num_total_samples
# 3.2 keypoint visibility loss
kpt_vis_preds = flatten_kpt_vis.view(-1,
self.num_keypoints)[pos_masks]
losses['loss_vis'] = self.loss_vis(kpt_vis_preds, vis_targets,
vis_weights)
# 3.3 keypoint loss
kpt_reg_preds = flatten_kpt_decoded.view(-1, self.num_keypoints,
2)[pos_masks]
if hasattr(self, 'loss_mle') and self.loss_mle.loss_weight > 0:
pose_vecs = flatten_pose_vecs.view(
-1, flatten_pose_vecs.size(-1))[pos_masks]
bbox_cs = torch.cat(
bbox_xyxy2cs(bbox_preds, self.bbox_padding), dim=1)
# 'cc' refers to 'cordinate classification'
kpt_cc_preds, pred_hms, sigmas = \
self.dcc.forward_train(pose_vecs,
bbox_cs,
pos_priors[..., :2])
target_hms = self.dcc.generate_target_heatmap(
kpt_targets, bbox_cs, sigmas, pos_areas)
losses['loss_mle'] = self.loss_mle(pred_hms, target_hms,
vis_targets)
if self.proxy_target_cc:
# form the regression target using the coordinate
# classification predictions
with torch.no_grad():
diff_cc = torch.norm(kpt_cc_preds - kpt_targets, dim=-1)
diff_reg = torch.norm(kpt_reg_preds - kpt_targets, dim=-1)
mask = (diff_reg > diff_cc).float()
kpt_weights_reg = vis_targets * mask
oks = self.assigner.oks_calculator(kpt_cc_preds,
kpt_targets,
vis_targets, pos_areas)
cls_targets = oks.unsqueeze(1)
losses['loss_oks'] = self.loss_oks(kpt_reg_preds,
kpt_cc_preds.detach(),
kpt_weights_reg, pos_areas)
else:
losses['loss_oks'] = self.loss_oks(kpt_reg_preds, kpt_targets,
vis_targets, pos_areas)
# update the target for classification loss
# the target for the positive grids are set to the oks calculated
# using predictions and assigned ground truth instances
extra_info['overlaps'] = cls_targets
cls_targets = cls_targets.pow(self.overlaps_power).detach()
obj_targets[pos_masks] = cls_targets.to(obj_targets)
# 3.4 classification loss
losses['loss_cls'] = self.loss_cls(cls_preds_all, obj_targets,
obj_weights) / num_total_samples
losses.update(extra_info)
return losses
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-scale features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (1, h, w)
or (K+1, h, w) if keypoint heatmaps are predicted
- displacements (Tensor): The predicted displacement fields
in shape (K*2, h, w)
"""
cls_scores, bbox_preds, _, kpt_vis, pose_vecs = self.forward(feats)
cfg = copy.deepcopy(test_cfg)
batch_img_metas = [d.metainfo for d in batch_data_samples]
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
# If the shape does not change, use the previous mlvl_priors
if featmap_sizes != self.featmap_sizes:
self.mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
self.featmap_sizes = featmap_sizes
flatten_priors = torch.cat(self.mlvl_priors)
mlvl_strides = [
flatten_priors.new_full((featmap_size.numel(), ),
stride) for featmap_size, stride in zip(
featmap_sizes, self.featmap_strides)
]
flatten_stride = torch.cat(mlvl_strides)
# flatten predictions
flatten_cls_scores = self._flatten_predictions(cls_scores).sigmoid()
flatten_bbox_preds = self._flatten_predictions(bbox_preds)
flatten_kpt_vis = self._flatten_predictions(kpt_vis).sigmoid()
flatten_pose_vecs = self._flatten_predictions(pose_vecs)
if flatten_pose_vecs is None:
flatten_pose_vecs = [None] * len(batch_img_metas)
flatten_bbox_preds = self.decode_bbox(flatten_bbox_preds,
flatten_priors, flatten_stride)
results_list = []
for (bboxes, scores, kpt_vis, pose_vecs,
img_meta) in zip(flatten_bbox_preds, flatten_cls_scores,
flatten_kpt_vis, flatten_pose_vecs,
batch_img_metas):
score_thr = cfg.get('score_thr', 0.01)
nms_pre = cfg.get('nms_pre', 100000)
scores, labels = scores.max(1, keepdim=True)
scores, _, keep_idxs_score, results = filter_scores_and_topk(
scores, score_thr, nms_pre, results=dict(labels=labels[:, 0]))
labels = results['labels']
bboxes = bboxes[keep_idxs_score]
kpt_vis = kpt_vis[keep_idxs_score]
grids = flatten_priors[keep_idxs_score]
stride = flatten_stride[keep_idxs_score]
if bboxes.numel() > 0:
nms_thr = cfg.get('nms_thr', 1.0)
if nms_thr < 1.0:
keep_idxs_nms = nms_torch(bboxes, scores, nms_thr)
bboxes = bboxes[keep_idxs_nms]
stride = stride[keep_idxs_nms]
labels = labels[keep_idxs_nms]
kpt_vis = kpt_vis[keep_idxs_nms]
scores = scores[keep_idxs_nms]
pose_vecs = pose_vecs[keep_idxs_score][keep_idxs_nms]
bbox_cs = torch.cat(
bbox_xyxy2cs(bboxes, self.bbox_padding), dim=1)
grids = grids[keep_idxs_nms]
keypoints = self.dcc.forward_test(pose_vecs, bbox_cs, grids)
else:
# empty prediction
keypoints = bboxes.new_zeros((0, self.num_keypoints, 2))
results = InstanceData(
scores=scores,
labels=labels,
bboxes=bboxes,
bbox_scores=scores,
keypoints=keypoints,
keypoint_scores=kpt_vis,
keypoints_visible=kpt_vis)
input_size = img_meta['input_size']
results.bboxes[:, 0::2].clamp_(0, input_size[0])
results.bboxes[:, 1::2].clamp_(0, input_size[1])
results_list.append(results.numpy())
return results_list
def switch_to_deploy(self, test_cfg: Optional[Dict]):
"""Precompute and save the grid coordinates and strides."""
if getattr(self, 'deploy', False):
return
self.deploy = True
# grid generator
input_size = test_cfg.get('input_size', (640, 640))
featmaps = []
for s in self.featmap_strides:
featmaps.append(
torch.rand(1, 1, input_size[0] // s, input_size[1] // s))
featmap_sizes = [fmap.shape[2:] for fmap in featmaps]
self.mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes, dtype=torch.float32, device='cpu')
self.flatten_priors = torch.cat(self.mlvl_priors)
mlvl_strides = [
self.flatten_priors.new_full((featmap_size.numel(), ), stride) for
featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
]
self.flatten_stride = torch.cat(mlvl_strides)