Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Optional, Sequence, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import build_conv_layer, build_norm_layer | |
from mmcv.cnn.bricks import DropPath | |
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.utils import digit_version, to_2tuple | |
from mmengine.utils.dl_utils import TORCH_VERSION | |
from torch import Tensor | |
from mmpose.utils.typing import ConfigType, OptConfigType | |
try: | |
from fairscale.nn.checkpoint import checkpoint_wrapper | |
except ImportError: | |
checkpoint_wrapper = None | |
def nlc_to_nchw(x, hw_shape): | |
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, L, C] before conversion. | |
hw_shape (Sequence[int]): The height and width of output feature map. | |
Returns: | |
Tensor: The output tensor of shape [N, C, H, W] after conversion. | |
""" | |
H, W = hw_shape | |
assert len(x.shape) == 3 | |
B, L, C = x.shape | |
assert L == H * W, 'The seq_len does not match H, W' | |
return x.transpose(1, 2).reshape(B, C, H, W).contiguous() | |
def nchw_to_nlc(x): | |
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, C, H, W] before conversion. | |
Returns: | |
Tensor: The output tensor of shape [N, L, C] after conversion. | |
""" | |
assert len(x.shape) == 4 | |
return x.flatten(2).transpose(1, 2).contiguous() | |
class AdaptivePadding(nn.Module): | |
"""Applies padding to input (if needed) so that input can get fully covered | |
by filter you specified. It support two modes "same" and "corner". The | |
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around | |
input. The "corner" mode would pad zero to bottom right. | |
Args: | |
kernel_size (int | tuple): Size of the kernel: | |
stride (int | tuple): Stride of the filter. Default: 1: | |
dilation (int | tuple): Spacing between kernel elements. | |
Default: 1 | |
padding (str): Support "same" and "corner", "corner" mode | |
would pad zero to bottom right, and "same" mode would | |
pad zero around input. Default: "corner". | |
Example: | |
>>> kernel_size = 16 | |
>>> stride = 16 | |
>>> dilation = 1 | |
>>> input = torch.rand(1, 1, 15, 17) | |
>>> adap_pad = AdaptivePadding( | |
>>> kernel_size=kernel_size, | |
>>> stride=stride, | |
>>> dilation=dilation, | |
>>> padding="corner") | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
>>> input = torch.rand(1, 1, 16, 17) | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
""" | |
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): | |
super(AdaptivePadding, self).__init__() | |
assert padding in ('same', 'corner') | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
padding = to_2tuple(padding) | |
dilation = to_2tuple(dilation) | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
def get_pad_shape(self, input_shape): | |
"""Get horizontal and vertical padding shapes.""" | |
input_h, input_w = input_shape | |
kernel_h, kernel_w = self.kernel_size | |
stride_h, stride_w = self.stride | |
output_h = math.ceil(input_h / stride_h) | |
output_w = math.ceil(input_w / stride_w) | |
pad_h = max((output_h - 1) * stride_h + | |
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) | |
pad_w = max((output_w - 1) * stride_w + | |
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) | |
return pad_h, pad_w | |
def forward(self, x): | |
"""Forward function.""" | |
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding == 'corner': | |
x = F.pad(x, [0, pad_w, 0, pad_h]) | |
elif self.padding == 'same': | |
x = F.pad(x, [ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
]) | |
return x | |
class PatchEmbed(BaseModule): | |
"""Image to Patch Embedding. | |
We use a conv layer to implement PatchEmbed. | |
Args: | |
in_channels (int): The num of input channels. Default: 3 | |
embed_dims (int): The dimensions of embedding. Default: 768 | |
conv_type (str): The config dict for embedding | |
conv layer type selection. Default: "Conv2d. | |
kernel_size (int): The kernel_size of embedding conv. Default: 16. | |
stride (int): The slide stride of embedding conv. | |
Default: None (Would be set as `kernel_size`). | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int): The dilation rate of embedding conv. Default: 1. | |
bias (bool): Bias of embed conv. Default: True. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: None. | |
input_size (int | tuple | None): The size of input, which will be | |
used to calculate the out size. Only work when `dynamic_size` | |
is False. Default: None. | |
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. | |
Default: None. | |
""" | |
def __init__( | |
self, | |
in_channels=3, | |
embed_dims=768, | |
conv_type='Conv2d', | |
kernel_size=16, | |
stride=16, | |
padding='corner', | |
dilation=1, | |
bias=True, | |
norm_cfg=None, | |
input_size=None, | |
init_cfg=None, | |
): | |
super(PatchEmbed, self).__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
if stride is None: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of conv | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.projection = build_conv_layer( | |
dict(type=conv_type), | |
in_channels=in_channels, | |
out_channels=embed_dims, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] | |
else: | |
self.norm = None | |
if input_size: | |
input_size = to_2tuple(input_size) | |
# `init_out_size` would be used outside to | |
# calculate the num_patches | |
# when `use_abs_pos_embed` outside | |
self.init_input_size = input_size | |
if self.adap_padding: | |
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) | |
input_h, input_w = input_size | |
input_h = input_h + pad_h | |
input_w = input_w + pad_w | |
input_size = (input_h, input_w) | |
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html | |
h_out = (input_size[0] + 2 * padding[0] - dilation[0] * | |
(kernel_size[0] - 1) - 1) // stride[0] + 1 | |
w_out = (input_size[1] + 2 * padding[1] - dilation[1] * | |
(kernel_size[1] - 1) - 1) // stride[1] + 1 | |
self.init_out_size = (h_out, w_out) | |
else: | |
self.init_input_size = None | |
self.init_out_size = None | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Has shape (B, C, H, W). In most case, C is 3. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, out_h * out_w, embed_dims) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(out_h, out_w). | |
""" | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
x = self.projection(x) | |
out_size = (x.shape[2], x.shape[3]) | |
x = x.flatten(2).transpose(1, 2) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x, out_size | |
class PatchMerging(BaseModule): | |
"""Merge patch feature map. | |
This layer groups feature map by kernel_size, and applies norm and linear | |
layers to the grouped feature map. Our implementation uses `nn.Unfold` to | |
merge patch, which is about 25% faster than original implementation. | |
Instead, we need to modify pretrained models for compatibility. | |
Args: | |
in_channels (int): The num of input channels. | |
to gets fully covered by filter and stride you specified.. | |
Default: True. | |
out_channels (int): The num of output channels. | |
kernel_size (int | tuple, optional): the kernel size in the unfold | |
layer. Defaults to 2. | |
stride (int | tuple, optional): the stride of the sliding blocks in the | |
unfold layer. Default: None. (Would be set as `kernel_size`) | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int | tuple, optional): dilation parameter in the unfold | |
layer. Default: 1. | |
bias (bool, optional): Whether to add bias in linear layer or not. | |
Defaults: False. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
init_cfg (dict, optional): The extra config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=2, | |
stride=None, | |
padding='corner', | |
dilation=1, | |
bias=False, | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if stride: | |
stride = stride | |
else: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of unfold | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.sampler = nn.Unfold( | |
kernel_size=kernel_size, | |
dilation=dilation, | |
padding=padding, | |
stride=stride) | |
sample_dim = kernel_size[0] * kernel_size[1] * in_channels | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, sample_dim)[1] | |
else: | |
self.norm = None | |
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) | |
def forward(self, x, input_size): | |
""" | |
Args: | |
x (Tensor): Has shape (B, H*W, C_in). | |
input_size (tuple[int]): The spatial shape of x, arrange as (H, W). | |
Default: None. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(Merged_H, Merged_W). | |
""" | |
B, L, C = x.shape | |
assert isinstance(input_size, Sequence), f'Expect ' \ | |
f'input_size is ' \ | |
f'`Sequence` ' \ | |
f'but get {input_size}' | |
H, W = input_size | |
assert L == H * W, 'input feature has wrong size' | |
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W | |
# Use nn.Unfold to merge patch. About 25% faster than original method, | |
# but need to modify pretrained model for compatibility | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
H, W = x.shape[-2:] | |
x = self.sampler(x) | |
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) | |
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * | |
(self.sampler.kernel_size[0] - 1) - | |
1) // self.sampler.stride[0] + 1 | |
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * | |
(self.sampler.kernel_size[1] - 1) - | |
1) // self.sampler.stride[1] + 1 | |
output_size = (out_h, out_w) | |
x = x.transpose(1, 2) # B, H/2*W/2, 4*C | |
x = self.norm(x) if self.norm else x | |
x = self.reduction(x) | |
return x, output_size | |
class ScaleNorm(nn.Module): | |
"""Scale Norm. | |
Args: | |
dim (int): The dimension of the scale vector. | |
eps (float, optional): The minimum value in clamp. Defaults to 1e-5. | |
Reference: | |
`Transformers without Tears: Improving the Normalization | |
of Self-Attention <https://arxiv.org/abs/1910.05895>`_ | |
""" | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(1)) | |
def forward(self, x): | |
"""Forward function. | |
Args: | |
x (torch.Tensor): Input tensor. | |
Returns: | |
torch.Tensor: The tensor after applying scale norm. | |
""" | |
if torch.onnx.is_in_onnx_export() and \ | |
digit_version(TORCH_VERSION) >= digit_version('1.12'): | |
norm = torch.linalg.norm(x, dim=-1, keepdim=True) | |
else: | |
norm = torch.norm(x, dim=-1, keepdim=True) | |
norm = norm * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
class SinePositionalEncoding(nn.Module): | |
"""Sine Positional Encoding Module. This module implements sine positional | |
encoding, which is commonly used in transformer-based models to add | |
positional information to the input sequences. It uses sine and cosine | |
functions to create positional embeddings for each element in the input | |
sequence. | |
Args: | |
out_channels (int): The number of features in the input sequence. | |
temperature (int): A temperature parameter used to scale | |
the positional encodings. Defaults to 10000. | |
spatial_dim (int): The number of spatial dimension of input | |
feature. 1 represents sequence data and 2 represents grid data. | |
Defaults to 1. | |
learnable (bool): Whether to optimize the frequency base. Defaults | |
to False. | |
eval_size (int, tuple[int], optional): The fixed spatial size of | |
input features. Defaults to None. | |
""" | |
def __init__( | |
self, | |
out_channels: int, | |
spatial_dim: int = 1, | |
temperature: int = 1e5, | |
learnable: bool = False, | |
eval_size: Optional[Union[int, Sequence[int]]] = None, | |
) -> None: | |
super().__init__() | |
assert out_channels % 2 == 0 | |
assert temperature > 0 | |
self.spatial_dim = spatial_dim | |
self.out_channels = out_channels | |
self.temperature = temperature | |
self.eval_size = eval_size | |
self.learnable = learnable | |
pos_dim = out_channels // 2 | |
dim_t = torch.arange(pos_dim, dtype=torch.float32) / pos_dim | |
dim_t = self.temperature**(dim_t) | |
if not learnable: | |
self.register_buffer('dim_t', dim_t) | |
else: | |
self.dim_t = nn.Parameter(dim_t.detach()) | |
# set parameters | |
if eval_size: | |
if hasattr(self, f'pos_enc_{eval_size}'): | |
delattr(self, f'pos_enc_{eval_size}') | |
pos_enc = self.generate_pos_encoding(size=eval_size) | |
self.register_buffer(f'pos_enc_{eval_size}', pos_enc) | |
def forward(self, *args, **kwargs): | |
return self.generate_pos_encoding(*args, **kwargs) | |
def generate_pos_encoding(self, | |
size: Union[int, Sequence[int]] = None, | |
position: Optional[Tensor] = None): | |
"""Generate positional encoding for input features. | |
Args: | |
size (int or tuple[int]): Size of the input features. Required | |
if position is None. | |
position (Tensor, optional): Position tensor. Required if size | |
is None. | |
""" | |
assert (size is not None) ^ (position is not None) | |
if (not (self.learnable | |
and self.training)) and size is not None and hasattr( | |
self, f'pos_enc_{size}'): | |
return getattr(self, f'pos_enc_{size}') | |
if self.spatial_dim == 1: | |
if size is not None: | |
if isinstance(size, (tuple, list)): | |
size = size[0] | |
position = torch.arange( | |
size, dtype=torch.float32, device=self.dim_t.device) | |
dim_t = self.dim_t.reshape(*((1, ) * position.ndim), -1) | |
freq = position.unsqueeze(-1) / dim_t | |
pos_enc = torch.cat((freq.cos(), freq.sin()), dim=-1) | |
elif self.spatial_dim == 2: | |
if size is not None: | |
if isinstance(size, (tuple, list)): | |
h, w = size[:2] | |
elif isinstance(size, (int, float)): | |
h, w = int(size), int(size) | |
else: | |
raise ValueError(f'got invalid type {type(size)} for size') | |
grid_h, grid_w = torch.meshgrid( | |
torch.arange( | |
int(h), dtype=torch.float32, device=self.dim_t.device), | |
torch.arange( | |
int(w), dtype=torch.float32, device=self.dim_t.device)) | |
grid_h, grid_w = grid_h.flatten(), grid_w.flatten() | |
else: | |
assert position.size(-1) == 2 | |
grid_h, grid_w = torch.unbind(position, dim=-1) | |
dim_t = self.dim_t.reshape(*((1, ) * grid_h.ndim), -1) | |
freq_h = grid_h.unsqueeze(-1) / dim_t | |
freq_w = grid_w.unsqueeze(-1) / dim_t | |
pos_enc_h = torch.cat((freq_h.cos(), freq_h.sin()), dim=-1) | |
pos_enc_w = torch.cat((freq_w.cos(), freq_w.sin()), dim=-1) | |
pos_enc = torch.stack((pos_enc_h, pos_enc_w), dim=-1) | |
return pos_enc | |
def apply_additional_pos_enc(feature: Tensor, | |
pos_enc: Tensor, | |
spatial_dim: int = 1): | |
"""Apply additional positional encoding to input features. | |
Args: | |
feature (Tensor): Input feature tensor. | |
pos_enc (Tensor): Positional encoding tensor. | |
spatial_dim (int): Spatial dimension of input features. | |
""" | |
assert spatial_dim in (1, 2), f'the argument spatial_dim must be ' \ | |
f'either 1 or 2, but got {spatial_dim}' | |
if spatial_dim == 2: | |
pos_enc = pos_enc.flatten(-2) | |
for _ in range(feature.ndim - pos_enc.ndim): | |
pos_enc = pos_enc.unsqueeze(0) | |
return feature + pos_enc | |
def apply_rotary_pos_enc(feature: Tensor, | |
pos_enc: Tensor, | |
spatial_dim: int = 1): | |
"""Apply rotary positional encoding to input features. | |
Args: | |
feature (Tensor): Input feature tensor. | |
pos_enc (Tensor): Positional encoding tensor. | |
spatial_dim (int): Spatial dimension of input features. | |
""" | |
assert spatial_dim in (1, 2), f'the argument spatial_dim must be ' \ | |
f'either 1 or 2, but got {spatial_dim}' | |
for _ in range(feature.ndim - pos_enc.ndim + spatial_dim - 1): | |
pos_enc = pos_enc.unsqueeze(0) | |
x1, x2 = torch.chunk(feature, 2, dim=-1) | |
if spatial_dim == 1: | |
cos, sin = torch.chunk(pos_enc, 2, dim=-1) | |
feature = torch.cat((x1 * cos - x2 * sin, x2 * cos + x1 * sin), | |
dim=-1) | |
elif spatial_dim == 2: | |
pos_enc_h, pos_enc_w = torch.unbind(pos_enc, dim=-1) | |
cos_h, sin_h = torch.chunk(pos_enc_h, 2, dim=-1) | |
cos_w, sin_w = torch.chunk(pos_enc_w, 2, dim=-1) | |
feature = torch.cat( | |
(x1 * cos_h - x2 * sin_h, x1 * cos_w + x2 * sin_w), dim=-1) | |
return feature | |
class ChannelWiseScale(nn.Module): | |
"""Scale vector by element multiplications. | |
Args: | |
dim (int): The dimension of the scale vector. | |
init_value (float, optional): The initial value of the scale vector. | |
Defaults to 1.0. | |
trainable (bool, optional): Whether the scale vector is trainable. | |
Defaults to True. | |
""" | |
def __init__(self, dim, init_value=1., trainable=True): | |
super().__init__() | |
self.scale = nn.Parameter( | |
init_value * torch.ones(dim), requires_grad=trainable) | |
def forward(self, x): | |
"""Forward function.""" | |
return x * self.scale | |
class GAUEncoder(BaseModule): | |
"""Gated Attention Unit (GAU) Encoder. | |
Args: | |
in_token_dims (int): The input token dimension. | |
out_token_dims (int): The output token dimension. | |
expansion_factor (int, optional): The expansion factor of the | |
intermediate token dimension. Defaults to 2. | |
s (int, optional): The self-attention feature dimension. | |
Defaults to 128. | |
eps (float, optional): The minimum value in clamp. Defaults to 1e-5. | |
dropout_rate (float, optional): The dropout rate. Defaults to 0.0. | |
drop_path (float, optional): The drop path rate. Defaults to 0.0. | |
act_fn (str, optional): The activation function which should be one | |
of the following options: | |
- 'ReLU': ReLU activation. | |
- 'SiLU': SiLU activation. | |
Defaults to 'SiLU'. | |
bias (bool, optional): Whether to use bias in linear layers. | |
Defaults to False. | |
pos_enc (bool, optional): Whether to use rotary position | |
embedding. Defaults to False. | |
spatial_dim (int, optional): The spatial dimension of inputs | |
Reference: | |
`Transformer Quality in Linear Time | |
<https://arxiv.org/abs/2202.10447>`_ | |
""" | |
def __init__(self, | |
in_token_dims, | |
out_token_dims, | |
expansion_factor=2, | |
s=128, | |
eps=1e-5, | |
dropout_rate=0., | |
drop_path=0., | |
act_fn='SiLU', | |
bias=False, | |
pos_enc: str = 'none', | |
spatial_dim: int = 1): | |
super(GAUEncoder, self).__init__() | |
self.s = s | |
self.bias = bias | |
self.pos_enc = pos_enc | |
self.in_token_dims = in_token_dims | |
self.spatial_dim = spatial_dim | |
self.drop_path = DropPath(drop_path) \ | |
if drop_path > 0. else nn.Identity() | |
self.e = int(in_token_dims * expansion_factor) | |
self.o = nn.Linear(self.e, out_token_dims, bias=bias) | |
self._build_layers() | |
self.ln = ScaleNorm(in_token_dims, eps=eps) | |
nn.init.xavier_uniform_(self.uv.weight) | |
if act_fn == 'SiLU': | |
assert digit_version(TORCH_VERSION) >= digit_version('1.7.0'), \ | |
'SiLU activation requires PyTorch version >= 1.7' | |
self.act_fn = nn.SiLU(True) | |
else: | |
self.act_fn = nn.ReLU(True) | |
if in_token_dims == out_token_dims: | |
self.shortcut = True | |
self.res_scale = ChannelWiseScale(in_token_dims) | |
else: | |
self.shortcut = False | |
self.sqrt_s = math.sqrt(s) | |
self.dropout_rate = dropout_rate | |
if dropout_rate > 0.: | |
self.dropout = nn.Dropout(dropout_rate) | |
def _build_layers(self): | |
self.uv = nn.Linear( | |
self.in_token_dims, 2 * self.e + self.s, bias=self.bias) | |
self.gamma = nn.Parameter(torch.rand((2, self.s))) | |
self.beta = nn.Parameter(torch.rand((2, self.s))) | |
def _forward(self, x, mask=None, pos_enc=None): | |
"""GAU Forward function.""" | |
x = self.ln(x) | |
# [B, K, in_token_dims] -> [B, K, e + e + s] | |
uv = self.uv(x) | |
uv = self.act_fn(uv) | |
# [B, K, e + e + s] -> [B, K, e], [B, K, e], [B, K, s] | |
u, v, base = torch.split(uv, [self.e, self.e, self.s], dim=-1) | |
# [B, K, 1, s] * [1, 1, 2, s] + [2, s] -> [B, K, 2, s] | |
dim = base.ndim - self.gamma.ndim + 1 | |
gamma = self.gamma.view(*((1, ) * dim), *self.gamma.size()) | |
beta = self.beta.view(*((1, ) * dim), *self.beta.size()) | |
base = base.unsqueeze(-2) * gamma + beta | |
# [B, K, 2, s] -> [B, K, s], [B, K, s] | |
q, k = torch.unbind(base, dim=-2) | |
if self.pos_enc == 'rope': | |
q = SinePositionalEncoding.apply_rotary_pos_enc( | |
q, pos_enc, self.spatial_dim) | |
k = SinePositionalEncoding.apply_rotary_pos_enc( | |
k, pos_enc, self.spatial_dim) | |
elif self.pos_enc == 'add': | |
pos_enc = pos_enc.reshape(*((1, ) * (q.ndim - 2)), q.size(-2), | |
q.size(-1)) | |
q = q + pos_enc | |
k = k + pos_enc | |
# [B, K, s].transpose(-1, -2) -> [B, s, K] | |
# [B, K, s] x [B, s, K] -> [B, K, K] | |
qk = torch.matmul(q, k.transpose(-1, -2)) | |
# [B, K, K] | |
kernel = torch.square(F.relu(qk / self.sqrt_s)) | |
if mask is not None: | |
kernel = kernel * mask | |
if self.dropout_rate > 0.: | |
kernel = self.dropout(kernel) | |
# [B, K, K] x [B, K, e] -> [B, K, e] | |
x = u * torch.matmul(kernel, v) | |
# [B, K, e] -> [B, K, out_token_dims] | |
x = self.o(x) | |
return x | |
def forward(self, x, mask=None, pos_enc=None): | |
"""Forward function.""" | |
out = self.drop_path(self._forward(x, mask=mask, pos_enc=pos_enc)) | |
if self.shortcut: | |
return self.res_scale(x) + out | |
else: | |
return out | |
class DetrTransformerEncoder(BaseModule): | |
"""Encoder of DETR. | |
Args: | |
num_layers (int): Number of encoder layers. | |
layer_cfg (:obj:`ConfigDict` or dict): the config of each encoder | |
layer. All the layers will share the same config. | |
num_cp (int): Number of checkpointing blocks in encoder layer. | |
Default to -1. | |
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control | |
the initialization. Defaults to None. | |
""" | |
def __init__(self, | |
num_layers: int, | |
layer_cfg: ConfigType, | |
num_cp: int = -1, | |
init_cfg: OptConfigType = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.num_layers = num_layers | |
self.layer_cfg = layer_cfg | |
self.num_cp = num_cp | |
assert self.num_cp <= self.num_layers | |
self._init_layers() | |
def _init_layers(self) -> None: | |
"""Initialize encoder layers.""" | |
self.layers = ModuleList([ | |
DetrTransformerEncoderLayer(**self.layer_cfg) | |
for _ in range(self.num_layers) | |
]) | |
if self.num_cp > 0: | |
if checkpoint_wrapper is None: | |
raise NotImplementedError( | |
'If you want to reduce GPU memory usage, \ | |
please install fairscale by executing the \ | |
following command: pip install fairscale.') | |
for i in range(self.num_cp): | |
self.layers[i] = checkpoint_wrapper(self.layers[i]) | |
self.embed_dims = self.layers[0].embed_dims | |
def forward(self, query: Tensor, query_pos: Tensor, | |
key_padding_mask: Tensor, **kwargs) -> Tensor: | |
"""Forward function of encoder. | |
Args: | |
query (Tensor): Input queries of encoder, has shape | |
(bs, num_queries, dim). | |
query_pos (Tensor): The positional embeddings of the queries, has | |
shape (bs, num_queries, dim). | |
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn` | |
input. ByteTensor, has shape (bs, num_queries). | |
Returns: | |
Tensor: Has shape (bs, num_queries, dim) if `batch_first` is | |
`True`, otherwise (num_queries, bs, dim). | |
""" | |
for layer in self.layers: | |
query = layer(query, query_pos, key_padding_mask, **kwargs) | |
return query | |
class DetrTransformerEncoderLayer(BaseModule): | |
"""Implements encoder layer in DETR transformer. | |
Args: | |
self_attn_cfg (:obj:`ConfigDict` or dict, optional): Config for self | |
attention. | |
ffn_cfg (:obj:`ConfigDict` or dict, optional): Config for FFN. | |
norm_cfg (:obj:`ConfigDict` or dict, optional): Config for | |
normalization layers. All the layers will share the same | |
config. Defaults to `LN`. | |
init_cfg (:obj:`ConfigDict` or dict, optional): Config to control | |
the initialization. Defaults to None. | |
""" | |
def __init__(self, | |
self_attn_cfg: OptConfigType = dict( | |
embed_dims=256, num_heads=8, dropout=0.0), | |
ffn_cfg: OptConfigType = dict( | |
embed_dims=256, | |
feedforward_channels=1024, | |
num_fcs=2, | |
ffn_drop=0., | |
act_cfg=dict(type='ReLU', inplace=True)), | |
norm_cfg: OptConfigType = dict(type='LN'), | |
init_cfg: OptConfigType = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.self_attn_cfg = self_attn_cfg | |
if 'batch_first' not in self.self_attn_cfg: | |
self.self_attn_cfg['batch_first'] = True | |
else: | |
assert self.self_attn_cfg['batch_first'] is True, 'First \ | |
dimension of all DETRs in mmdet is `batch`, \ | |
please set `batch_first` flag.' | |
self.ffn_cfg = ffn_cfg | |
self.norm_cfg = norm_cfg | |
self._init_layers() | |
def _init_layers(self) -> None: | |
"""Initialize self-attention, FFN, and normalization.""" | |
self.self_attn = MultiheadAttention(**self.self_attn_cfg) | |
self.embed_dims = self.self_attn.embed_dims | |
self.ffn = FFN(**self.ffn_cfg) | |
norms_list = [ | |
build_norm_layer(self.norm_cfg, self.embed_dims)[1] | |
for _ in range(2) | |
] | |
self.norms = ModuleList(norms_list) | |
def forward(self, query: Tensor, query_pos: Tensor, | |
key_padding_mask: Tensor, **kwargs) -> Tensor: | |
"""Forward function of an encoder layer. | |
Args: | |
query (Tensor): The input query, has shape (bs, num_queries, dim). | |
query_pos (Tensor): The positional encoding for query, with | |
the same shape as `query`. | |
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn` | |
input. ByteTensor. has shape (bs, num_queries). | |
Returns: | |
Tensor: forwarded results, has shape (bs, num_queries, dim). | |
""" | |
query = self.self_attn( | |
query=query, | |
key=query, | |
value=query, | |
query_pos=query_pos, | |
key_pos=query_pos, | |
key_padding_mask=key_padding_mask, | |
**kwargs) | |
query = self.norms[0](query) | |
query = self.ffn(query) | |
query = self.norms[1](query) | |
return query | |