Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pickle | |
import time | |
from langchain_openai import OpenAI | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.document_loaders import UnstructuredURLLoader | |
from langchain_openai import OpenAIEmbeddings | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
load_dotenv() | |
st.title("ChatGPT-like clone") | |
# Set OpenAI API key from Streamlit secrets | |
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) | |
# Set a default model | |
if "openai_model" not in st.session_state: | |
st.session_state["openai_model"] = "gpt-3.5-turbo" # we've added a default model to st.session_state | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What is up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
stream = client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
) | |
response = st.write_stream(stream) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |