rahul7star's picture
Migrated from GitHub
05fcd0f verified
import os
import json
import time
import traceback
import einops
import numpy as np
import torch
import datetime
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from diffusers_helper.models.mag_cache import MagCache
from diffusers_helper.utils import save_bcthw_as_mp4, generate_timestamp, resize_and_center_crop
from diffusers_helper.memory import cpu, gpu, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
from diffusers_helper.hunyuan import vae_decode
from modules.video_queue import JobStatus
from modules.prompt_handler import parse_timestamped_prompt
from modules.generators import create_model_generator
from modules.pipelines.video_tools import combine_videos_sequentially_from_tensors
from modules import DUMMY_LORA_NAME # Import the constant
from modules.llm_captioner import unload_captioning_model
from modules.llm_enhancer import unload_enhancing_model
from . import create_pipeline
import __main__ as studio_module # Get a reference to the __main__ module object
@torch.no_grad()
def get_cached_or_encode_prompt(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, target_device, prompt_embedding_cache):
"""
Retrieves prompt embeddings from cache or encodes them if not found.
Stores encoded embeddings (on CPU) in the cache.
Returns embeddings moved to the target_device.
"""
from diffusers_helper.hunyuan import encode_prompt_conds, crop_or_pad_yield_mask
if prompt in prompt_embedding_cache:
print(f"Cache hit for prompt: {prompt[:60]}...")
llama_vec_cpu, llama_mask_cpu, clip_l_pooler_cpu = prompt_embedding_cache[prompt]
# Move cached embeddings (from CPU) to the target device
llama_vec = llama_vec_cpu.to(target_device)
llama_attention_mask = llama_mask_cpu.to(target_device) if llama_mask_cpu is not None else None
clip_l_pooler = clip_l_pooler_cpu.to(target_device)
return llama_vec, llama_attention_mask, clip_l_pooler
else:
print(f"Cache miss for prompt: {prompt[:60]}...")
llama_vec, clip_l_pooler = encode_prompt_conds(
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
# Store CPU copies in cache
prompt_embedding_cache[prompt] = (llama_vec.cpu(), llama_attention_mask.cpu() if llama_attention_mask is not None else None, clip_l_pooler.cpu())
# Return embeddings already on the target device (as encode_prompt_conds uses the model's device)
return llama_vec, llama_attention_mask, clip_l_pooler
@torch.no_grad()
def worker(
model_type,
input_image,
end_frame_image, # The end frame image (numpy array or None)
end_frame_strength, # Influence of the end frame
prompt_text,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
use_teacache,
teacache_num_steps,
teacache_rel_l1_thresh,
use_magcache,
magcache_threshold,
magcache_max_consecutive_skips,
magcache_retention_ratio,
blend_sections,
latent_type,
selected_loras,
has_input_image,
lora_values=None,
job_stream=None,
output_dir=None,
metadata_dir=None,
input_files_dir=None, # Add input_files_dir parameter
input_image_path=None, # Add input_image_path parameter
end_frame_image_path=None, # Add end_frame_image_path parameter
resolutionW=640, # Add resolution parameter with default value
resolutionH=640,
lora_loaded_names=[],
input_video=None, # Add input_video parameter with default value of None
combine_with_source=None, # Add combine_with_source parameter
num_cleaned_frames=5, # Add num_cleaned_frames parameter with default value
save_metadata_checked=True # Add save_metadata_checked parameter
):
"""
Worker function for video generation.
"""
random_generator = torch.Generator("cpu").manual_seed(seed)
unload_enhancing_model()
unload_captioning_model()
# Filter out the dummy LoRA from selected_loras at the very beginning of the worker
actual_selected_loras_for_worker = []
if isinstance(selected_loras, list):
actual_selected_loras_for_worker = [lora for lora in selected_loras if lora != DUMMY_LORA_NAME]
if DUMMY_LORA_NAME in selected_loras and DUMMY_LORA_NAME in actual_selected_loras_for_worker: # Should not happen if filter works
print(f"Worker.py: Error - '{DUMMY_LORA_NAME}' was selected but not filtered out.")
elif DUMMY_LORA_NAME in selected_loras:
print(f"Worker.py: Filtered out '{DUMMY_LORA_NAME}' from selected LoRAs.")
elif selected_loras is not None: # If it's a single string (should not happen with multiselect dropdown)
if selected_loras != DUMMY_LORA_NAME:
actual_selected_loras_for_worker = [selected_loras]
selected_loras = actual_selected_loras_for_worker
print(f"Worker: Selected LoRAs for this worker: {selected_loras}")
# Import globals from the main module
from __main__ import high_vram, args, text_encoder, text_encoder_2, tokenizer, tokenizer_2, vae, image_encoder, feature_extractor, prompt_embedding_cache, settings, stream
# Ensure any existing LoRAs are unloaded from the current generator
if studio_module.current_generator is not None:
print("Worker: Unloading LoRAs from studio_module.current_generator")
studio_module.current_generator.unload_loras()
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
stream_to_use = job_stream if job_stream is not None else stream
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
# --- Total progress tracking ---
total_steps = total_latent_sections * steps # Total diffusion steps over all segments
step_durations = [] # Rolling history of recent step durations for ETA
last_step_time = time.time()
# Parse the timestamped prompt with boundary snapping and reversing
# prompt_text should now be the original string from the job queue
prompt_sections = parse_timestamped_prompt(prompt_text, total_second_length, latent_window_size, model_type)
job_id = generate_timestamp()
# Initialize progress data with a clear starting message and dummy preview
dummy_preview = np.zeros((64, 64, 3), dtype=np.uint8)
initial_progress_data = {
'preview': dummy_preview,
'desc': 'Starting job...',
'html': make_progress_bar_html(0, 'Starting job...')
}
# Store initial progress data in the job object if using a job stream
if job_stream is not None:
try:
from __main__ import job_queue
job = job_queue.get_job(job_id)
if job:
job.progress_data = initial_progress_data
except Exception as e:
print(f"Error storing initial progress data: {e}")
# Push initial progress update to both streams
stream_to_use.output_queue.push(('progress', (dummy_preview, 'Starting job...', make_progress_bar_html(0, 'Starting job...'))))
# Push job ID to stream to ensure monitoring connection
stream_to_use.output_queue.push(('job_id', job_id))
stream_to_use.output_queue.push(('monitor_job', job_id))
# Always push to the main stream to ensure the UI is updated
from __main__ import stream as main_stream
if main_stream: # Always push to main stream regardless of whether it's the same as stream_to_use
print(f"Pushing initial progress update to main stream for job {job_id}")
main_stream.output_queue.push(('progress', (dummy_preview, 'Starting job...', make_progress_bar_html(0, 'Starting job...'))))
# Push job ID to main stream to ensure monitoring connection
main_stream.output_queue.push(('job_id', job_id))
main_stream.output_queue.push(('monitor_job', job_id))
try:
# Create a settings dictionary for the pipeline
pipeline_settings = {
"output_dir": output_dir,
"metadata_dir": metadata_dir,
"input_files_dir": input_files_dir,
"save_metadata": settings.get("save_metadata", True),
"gpu_memory_preservation": settings.get("gpu_memory_preservation", 6),
"mp4_crf": settings.get("mp4_crf", 16),
"clean_up_videos": settings.get("clean_up_videos", True),
"gradio_temp_dir": settings.get("gradio_temp_dir", "./gradio_temp"),
"high_vram": high_vram
}
# Create the appropriate pipeline for the model type
pipeline = create_pipeline(model_type, pipeline_settings)
# Create job parameters dictionary
job_params = {
'model_type': model_type,
'input_image': input_image,
'end_frame_image': end_frame_image,
'end_frame_strength': end_frame_strength,
'prompt_text': prompt_text,
'n_prompt': n_prompt,
'seed': seed,
'total_second_length': total_second_length,
'latent_window_size': latent_window_size,
'steps': steps,
'cfg': cfg,
'gs': gs,
'rs': rs,
'blend_sections': blend_sections,
'latent_type': latent_type,
'use_teacache': use_teacache,
'teacache_num_steps': teacache_num_steps,
'teacache_rel_l1_thresh': teacache_rel_l1_thresh,
'use_magcache': use_magcache,
'magcache_threshold': magcache_threshold,
'magcache_max_consecutive_skips': magcache_max_consecutive_skips,
'magcache_retention_ratio': magcache_retention_ratio,
'selected_loras': selected_loras,
'has_input_image': has_input_image,
'lora_values': lora_values,
'resolutionW': resolutionW,
'resolutionH': resolutionH,
'lora_loaded_names': lora_loaded_names,
'input_image_path': input_image_path,
'end_frame_image_path': end_frame_image_path,
'combine_with_source': combine_with_source,
'num_cleaned_frames': num_cleaned_frames,
'save_metadata_checked': save_metadata_checked # Ensure it's in job_params for internal use
}
# Validate parameters
is_valid, error_message = pipeline.validate_parameters(job_params)
if not is_valid:
raise ValueError(f"Invalid parameters: {error_message}")
# Prepare parameters
job_params = pipeline.prepare_parameters(job_params)
if not high_vram:
# Unload everything *except* the potentially active transformer
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae)
if studio_module.current_generator is not None and studio_module.current_generator.transformer is not None:
offload_model_from_device_for_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=8)
# --- Model Loading / Switching ---
print(f"Worker starting for model type: {model_type}")
print(f"Worker: Before model assignment, studio_module.current_generator is {type(studio_module.current_generator)}, id: {id(studio_module.current_generator)}")
# Create the appropriate model generator
new_generator = create_model_generator(
model_type,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
vae=vae,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
high_vram=high_vram,
prompt_embedding_cache=prompt_embedding_cache,
offline=args.offline,
settings=settings
)
# Update the global generator
# This modifies the 'current_generator' attribute OF THE '__main__' MODULE OBJECT
studio_module.current_generator = new_generator
print(f"Worker: AFTER model assignment, studio_module.current_generator is {type(studio_module.current_generator)}, id: {id(studio_module.current_generator)}")
if studio_module.current_generator:
print(f"Worker: studio_module.current_generator.transformer is {type(studio_module.current_generator.transformer)}")
# Load the transformer model
studio_module.current_generator.load_model()
# Ensure the model has no LoRAs loaded
print(f"Ensuring {model_type} model has no LoRAs loaded")
studio_module.current_generator.unload_loras()
# Preprocess inputs
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Preprocessing inputs...'))))
processed_inputs = pipeline.preprocess_inputs(job_params)
# Update job_params with processed inputs
job_params.update(processed_inputs)
# Save the starting image directly to the output directory with full metadata
# Check both global settings and job-specific save_metadata_checked parameter
if settings.get("save_metadata") and job_params.get('save_metadata_checked', True) and job_params.get('input_image') is not None:
try:
# Import the save_job_start_image function from metadata_utils
from modules.pipelines.metadata_utils import save_job_start_image, create_metadata
# Create comprehensive metadata for the job
metadata_dict = create_metadata(job_params, job_id, settings)
# Save the starting image with metadata
save_job_start_image(job_params, job_id, settings)
print(f"Saved metadata and starting image for job {job_id}")
except Exception as e:
print(f"Error saving starting image and metadata: {e}")
traceback.print_exc()
# Pre-encode all prompts
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding all prompts...'))))
# THE FOLLOWING CODE SHOULD BE INSIDE THE TRY BLOCK
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
# PROMPT BLENDING: Pre-encode all prompts and store in a list in order
unique_prompts = []
for section in prompt_sections:
if section.prompt not in unique_prompts:
unique_prompts.append(section.prompt)
encoded_prompts = {}
for prompt in unique_prompts:
# Use the helper function for caching and encoding
llama_vec, llama_attention_mask, clip_l_pooler = get_cached_or_encode_prompt(
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu, prompt_embedding_cache
)
encoded_prompts[prompt] = (llama_vec, llama_attention_mask, clip_l_pooler)
# PROMPT BLENDING: Build a list of (start_section_idx, prompt) for each prompt
prompt_change_indices = []
last_prompt = None
for idx, section in enumerate(prompt_sections):
if section.prompt != last_prompt:
prompt_change_indices.append((idx, section.prompt))
last_prompt = section.prompt
# Encode negative prompt
if cfg == 1:
llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = (
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][0]),
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][1]),
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][2])
)
else:
# Use the helper function for caching and encoding negative prompt
# Ensure n_prompt is a string
n_prompt_str = str(n_prompt) if n_prompt is not None else ""
llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = get_cached_or_encode_prompt(
n_prompt_str, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu, prompt_embedding_cache
)
end_of_input_video_embedding = None # Video model end frame CLIP Vision embedding
# Process input image or video based on model type
if model_type == "Video" or model_type == "Video F1":
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
# Encode the video using the VideoModelGenerator
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_image_np, input_frames_resized_np = studio_module.current_generator.video_encode(
video_path=job_params['input_image'], # For Video model, input_image contains the video path
resolution=job_params['resolutionW'],
no_resize=False,
vae_batch_size=16,
device=gpu,
input_files_dir=job_params['input_files_dir']
)
if end_of_input_video_image_np is not None:
try:
from modules.pipelines.metadata_utils import save_last_video_frame
save_last_video_frame(job_params, job_id, settings, end_of_input_video_image_np)
except Exception as e:
print(f"Error saving last video frame: {e}")
traceback.print_exc()
# RT_BORG: retained only until we make our final decisions on how to handle combining videos
# Only necessary to retain resized frames to produce a combined video with source frames of the right dimensions
#if combine_with_source:
# # Store input_frames_resized_np in job_params for later use
# job_params['input_frames_resized_np'] = input_frames_resized_np
# CLIP Vision encoding for the first frame
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
from diffusers_helper.clip_vision import hf_clip_vision_encode
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
end_of_input_video_embedding = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder).last_hidden_state
# Store the input video pixels and latents for later use
input_video_pixels = input_video_pixels.cpu()
video_latents = video_latents.cpu()
# Store the full video latents in the generator instance for preparing clean latents
if hasattr(studio_module.current_generator, 'set_full_video_latents'):
studio_module.current_generator.set_full_video_latents(video_latents.clone())
print(f"Stored full input video latents in VideoModelGenerator. Shape: {video_latents.shape}")
# For Video model, history_latents is initialized with the video_latents
history_latents = video_latents
# Store the last frame of the video latents as start_latent for the model
start_latent = video_latents[:, :, -1:].cpu()
print(f"Using last frame of input video as start_latent. Shape: {start_latent.shape}")
print(f"Placed last frame of video at position 0 in history_latents")
print(f"Initialized history_latents with video context. Shape: {history_latents.shape}")
# Store the number of frames in the input video for later use
input_video_frame_count = video_latents.shape[2]
else:
# Regular image processing
height = job_params['height']
width = job_params['width']
if not has_input_image and job_params.get('latent_type') == 'Noise':
# print("************************************************")
# print("** Using 'Noise' latent type for T2V workflow **")
# print("************************************************")
# Create a random latent to serve as the initial VAE context anchor.
# This provides a random starting point without visual bias.
start_latent = torch.randn(
(1, 16, 1, height // 8, width // 8),
generator=random_generator, device=random_generator.device
).to(device=gpu, dtype=torch.float32)
# Create a neutral black image to generate a valid "null" CLIP Vision embedding.
# This provides the model with a valid, in-distribution unconditional image prompt.
# RT_BORG: Clip doesn't understand noise at all. I also tried using
# image_encoder_last_hidden_state = torch.zeros((1, 257, 1152), device=gpu, dtype=studio_module.current_generator.transformer.dtype)
# to represent a "null" CLIP Vision embedding in the shape for the CLIP encoder,
# but the Video model wasn't trained to handle zeros, so using a neutral black image for CLIP.
black_image_np = np.zeros((height, width, 3), dtype=np.uint8)
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
from diffusers_helper.clip_vision import hf_clip_vision_encode
image_encoder_output = hf_clip_vision_encode(black_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
else:
input_image_np = job_params['input_image']
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# Start image encoding with VAE
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
from diffusers_helper.hunyuan import vae_encode
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
from diffusers_helper.clip_vision import hf_clip_vision_encode
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# VAE encode end_frame_image if provided
end_frame_latent = None
# VAE encode end_frame_image resized to output dimensions, if provided
end_frame_output_dimensions_latent = None
end_clip_embedding = None # Video model end frame CLIP Vision embedding
# Models with end_frame_image processing
if (model_type == "Original with Endframe" or model_type == "Video") and job_params.get('end_frame_image') is not None:
print(f"Processing end frame for {model_type} model...")
end_frame_image = job_params['end_frame_image']
if not isinstance(end_frame_image, np.ndarray):
print(f"Warning: end_frame_image is not a numpy array (type: {type(end_frame_image)}). Attempting conversion or skipping.")
try:
end_frame_image = np.array(end_frame_image)
except Exception as e_conv:
print(f"Could not convert end_frame_image to numpy array: {e_conv}. Skipping end frame.")
end_frame_image = None
if end_frame_image is not None:
# Use the main job's target width/height (bucket dimensions) for the end frame
end_frame_np = job_params['end_frame_image']
if settings.get("save_metadata"):
Image.fromarray(end_frame_np).save(os.path.join(metadata_dir, f'{job_id}_end_frame_processed.png'))
end_frame_pt = torch.from_numpy(end_frame_np).float() / 127.5 - 1
end_frame_pt = end_frame_pt.permute(2, 0, 1)[None, :, None] # VAE expects [B, C, F, H, W]
if not high_vram: load_model_as_complete(vae, target_device=gpu) # Ensure VAE is loaded
from diffusers_helper.hunyuan import vae_encode
end_frame_latent = vae_encode(end_frame_pt, vae)
# end_frame_output_dimensions_latent is sized like the start_latent and generated latents
end_frame_output_dimensions_np = resize_and_center_crop(end_frame_np, width, height)
end_frame_output_dimensions_pt = torch.from_numpy(end_frame_output_dimensions_np).float() / 127.5 - 1
end_frame_output_dimensions_pt = end_frame_output_dimensions_pt.permute(2, 0, 1)[None, :, None] # VAE expects [B, C, F, H, W]
end_frame_output_dimensions_latent = vae_encode(end_frame_output_dimensions_pt, vae)
print("End frame VAE encoded.")
# Video Mode CLIP Vision encoding for end frame
if model_type == "Video":
if not high_vram: # Ensure image_encoder is on GPU for this operation
load_model_as_complete(image_encoder, target_device=gpu)
from diffusers_helper.clip_vision import hf_clip_vision_encode
end_clip_embedding = hf_clip_vision_encode(end_frame_np, feature_extractor, image_encoder).last_hidden_state
end_clip_embedding = end_clip_embedding.to(studio_module.current_generator.transformer.dtype)
# Need that dtype conversion for end_clip_embedding? I don't think so, but it was in the original PR.
if not high_vram: # Offload VAE and image_encoder if they were loaded
offload_model_from_device_for_memory_preservation(vae, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
offload_model_from_device_for_memory_preservation(image_encoder, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
# Dtype
for prompt_key in encoded_prompts:
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[prompt_key]
llama_vec = llama_vec.to(studio_module.current_generator.transformer.dtype)
clip_l_pooler = clip_l_pooler.to(studio_module.current_generator.transformer.dtype)
encoded_prompts[prompt_key] = (llama_vec, llama_attention_mask, clip_l_pooler)
llama_vec_n = llama_vec_n.to(studio_module.current_generator.transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(studio_module.current_generator.transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(studio_module.current_generator.transformer.dtype)
# Sampling
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
num_frames = latent_window_size * 4 - 3
# Initialize total_generated_latent_frames for Video model
total_generated_latent_frames = 0 # Default initialization for all model types
# Initialize history latents based on model type
if model_type != "Video" and model_type != "Video F1": # Skip for Video models as we already initialized it
history_latents = studio_module.current_generator.prepare_history_latents(height, width)
# For F1 model, initialize with start latent
if model_type == "F1":
history_latents = studio_module.current_generator.initialize_with_start_latent(history_latents, start_latent, has_input_image)
# If we had a real start image, it was just added to the history_latents
total_generated_latent_frames = 1 if has_input_image else 0
elif model_type == "Original" or model_type == "Original with Endframe":
total_generated_latent_frames = 0
history_pixels = None
# Get latent paddings from the generator
latent_paddings = studio_module.current_generator.get_latent_paddings(total_latent_sections)
# PROMPT BLENDING: Track section index
section_idx = 0
# Load LoRAs if selected
if selected_loras:
lora_folder_from_settings = settings.get("lora_dir")
studio_module.current_generator.load_loras(selected_loras, lora_folder_from_settings, lora_loaded_names, lora_values)
# --- Callback for progress ---
def callback(d):
nonlocal last_step_time, step_durations
# Check for cancellation signal
if stream_to_use.input_queue.top() == 'end':
print("Cancellation signal detected in callback")
return 'cancel' # Return a signal that will be checked in the sampler
now_time = time.time()
# Record duration between diffusion steps (skip first where duration may include setup)
if last_step_time is not None:
step_delta = now_time - last_step_time
if step_delta > 0:
step_durations.append(step_delta)
if len(step_durations) > 30: # Keep only recent 30 steps
step_durations.pop(0)
last_step_time = now_time
avg_step = sum(step_durations) / len(step_durations) if step_durations else 0.0
preview = d['denoised']
from diffusers_helper.hunyuan import vae_decode_fake
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
# --- Progress & ETA logic ---
# Current segment progress
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
# Total progress
total_steps_done = section_idx * steps + current_step
total_percentage = int(100.0 * total_steps_done / total_steps)
# ETA calculations
def fmt_eta(sec):
try:
return str(datetime.timedelta(seconds=int(sec)))
except Exception:
return "--:--"
segment_eta = (steps - current_step) * avg_step if avg_step else 0
total_eta = (total_steps - total_steps_done) * avg_step if avg_step else 0
segment_hint = f'Sampling {current_step}/{steps} ETA {fmt_eta(segment_eta)}'
total_hint = f'Total {total_steps_done}/{total_steps} ETA {fmt_eta(total_eta)}'
# For Video model, add the input video frame count when calculating current position
if model_type == "Video":
# Calculate the time position including the input video frames
input_video_time = input_video_frame_count * 4 / 30 # Convert latent frames to time
current_pos = input_video_time + (total_generated_latent_frames * 4 - 3) / 30
# Original position is the remaining time to generate
original_pos = total_second_length - (total_generated_latent_frames * 4 - 3) / 30
else:
# For other models, calculate as before
current_pos = (total_generated_latent_frames * 4 - 3) / 30
original_pos = total_second_length - current_pos
# Ensure positions are not negative
if current_pos < 0: current_pos = 0
if original_pos < 0: original_pos = 0
hint = segment_hint # deprecated variable kept to minimise other code changes
desc = studio_module.current_generator.format_position_description(
total_generated_latent_frames,
current_pos,
original_pos,
current_prompt
)
# Create progress data dictionary
progress_data = {
'preview': preview,
'desc': desc,
'html': make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint)
}
# Store progress data in the job object if using a job stream
if job_stream is not None:
try:
from __main__ import job_queue
job = job_queue.get_job(job_id)
if job:
job.progress_data = progress_data
except Exception as e:
print(f"Error updating job progress data: {e}")
# Always push to the job-specific stream
stream_to_use.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint))))
# Always push to the main stream to ensure the UI is updated
# This is especially important for resumed jobs
from __main__ import stream as main_stream
if main_stream: # Always push to main stream regardless of whether it's the same as stream_to_use
main_stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint))))
# Also push job ID to main stream to ensure monitoring connection
if main_stream:
main_stream.output_queue.push(('job_id', job_id))
main_stream.output_queue.push(('monitor_job', job_id))
# MagCache / TeaCache Initialization Logic
magcache = None
# RT_BORG: I cringe at this, but refactoring to introduce an actual model class will fix it.
model_family = "F1" if "F1" in model_type else "Original"
if settings.get("calibrate_magcache"): # Calibration mode (forces MagCache on)
print("Setting Up MagCache for Calibration")
is_calibrating = settings.get("calibrate_magcache")
studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False) # Ensure TeaCache is off
magcache = MagCache(model_family=model_family, height=height, width=width, num_steps=steps, is_calibrating=is_calibrating, threshold=magcache_threshold, max_consectutive_skips=magcache_max_consecutive_skips, retention_ratio=magcache_retention_ratio)
studio_module.current_generator.transformer.install_magcache(magcache)
elif use_magcache: # User selected MagCache
print("Setting Up MagCache")
magcache = MagCache(model_family=model_family, height=height, width=width, num_steps=steps, is_calibrating=False, threshold=magcache_threshold, max_consectutive_skips=magcache_max_consecutive_skips, retention_ratio=magcache_retention_ratio)
studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False) # Ensure TeaCache is off
studio_module.current_generator.transformer.install_magcache(magcache)
elif use_teacache:
print("Setting Up TeaCache")
studio_module.current_generator.transformer.initialize_teacache(enable_teacache=True, num_steps=teacache_num_steps, rel_l1_thresh=teacache_rel_l1_thresh)
studio_module.current_generator.transformer.uninstall_magcache()
else:
print("No Transformer Cache in use")
studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False)
studio_module.current_generator.transformer.uninstall_magcache()
# --- Main generation loop ---
# `i_section_loop` will be our loop counter for applying end_frame_latent
for i_section_loop, latent_padding in enumerate(latent_paddings): # Existing loop structure
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream_to_use.input_queue.top() == 'end':
stream_to_use.output_queue.push(('end', None))
return
# Calculate the current time position
if model_type == "Video":
# For Video model, add the input video time to the current position
input_video_time = input_video_frame_count * 4 / 30 # Convert latent frames to time
current_time_position = (total_generated_latent_frames * 4 - 3) / 30 # in seconds
if current_time_position < 0:
current_time_position = 0.01
else:
# For other models, calculate as before
current_time_position = (total_generated_latent_frames * 4 - 3) / 30 # in seconds
if current_time_position < 0:
current_time_position = 0.01
# Find the appropriate prompt for this section
current_prompt = prompt_sections[0].prompt # Default to first prompt
for section in prompt_sections:
if section.start_time <= current_time_position and (section.end_time is None or current_time_position < section.end_time):
current_prompt = section.prompt
break
# PROMPT BLENDING: Find if we're in a blend window
blend_alpha = None
prev_prompt = current_prompt
next_prompt = current_prompt
# Only try to blend if blend_sections > 0 and we have prompt change indices and multiple sections
try:
blend_sections_int = int(blend_sections)
except ValueError:
blend_sections_int = 0 # Default to 0 if conversion fails, effectively disabling blending
print(f"Warning: blend_sections ('{blend_sections}') is not a valid integer. Disabling prompt blending for this section.")
if blend_sections_int > 0 and prompt_change_indices and len(prompt_sections) > 1:
for i, (change_idx, prompt) in enumerate(prompt_change_indices):
if section_idx < change_idx:
prev_prompt = prompt_change_indices[i - 1][1] if i > 0 else prompt
next_prompt = prompt
blend_start = change_idx
blend_end = change_idx + blend_sections
if section_idx >= change_idx and section_idx < blend_end:
blend_alpha = (section_idx - change_idx + 1) / blend_sections
break
elif section_idx == change_idx:
# At the exact change, start blending
if i > 0:
prev_prompt = prompt_change_indices[i - 1][1]
next_prompt = prompt
blend_alpha = 1.0 / blend_sections
else:
prev_prompt = prompt
next_prompt = prompt
blend_alpha = None
break
else:
# After last change, no blending
prev_prompt = current_prompt
next_prompt = current_prompt
blend_alpha = None
# Get the encoded prompt for this section
if blend_alpha is not None and prev_prompt != next_prompt:
# Blend embeddings
prev_llama_vec, prev_llama_attention_mask, prev_clip_l_pooler = encoded_prompts[prev_prompt]
next_llama_vec, next_llama_attention_mask, next_clip_l_pooler = encoded_prompts[next_prompt]
llama_vec = (1 - blend_alpha) * prev_llama_vec + blend_alpha * next_llama_vec
llama_attention_mask = prev_llama_attention_mask # usually same
clip_l_pooler = (1 - blend_alpha) * prev_clip_l_pooler + blend_alpha * next_clip_l_pooler
print(f"Blending prompts: '{prev_prompt[:30]}...' -> '{next_prompt[:30]}...', alpha={blend_alpha:.2f}")
else:
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[current_prompt]
original_time_position = total_second_length - current_time_position
if original_time_position < 0:
original_time_position = 0
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, '
f'time position: {current_time_position:.2f}s (original: {original_time_position:.2f}s), '
f'using prompt: {current_prompt[:60]}...')
# Apply end_frame_latent to history_latents for models with Endframe support
if (model_type == "Original with Endframe") and i_section_loop == 0 and end_frame_latent is not None:
print(f"Applying end_frame_latent to history_latents with strength: {end_frame_strength}")
actual_end_frame_latent_for_history = end_frame_latent.clone()
if end_frame_strength != 1.0: # Only multiply if not full strength
actual_end_frame_latent_for_history = actual_end_frame_latent_for_history * end_frame_strength
# Ensure history_latents is on the correct device (usually CPU for this kind of modification if it's init'd there)
# and that the assigned tensor matches its dtype.
# The `studio_module.current_generator.prepare_history_latents` initializes it on CPU with float32.
if history_latents.shape[2] >= 1: # Check if the 'Depth_slots' dimension is sufficient
if model_type == "Original with Endframe":
# For Original model, apply to the beginning (position 0)
history_latents[:, :, 0:1, :, :] = actual_end_frame_latent_for_history.to(
device=history_latents.device, # Assign to history_latents' current device
dtype=history_latents.dtype # Match history_latents' dtype
)
elif model_type == "F1 with Endframe":
# For F1 model, apply to the end (last position)
history_latents[:, :, -1:, :, :] = actual_end_frame_latent_for_history.to(
device=history_latents.device, # Assign to history_latents' current device
dtype=history_latents.dtype # Match history_latents' dtype
)
print(f"End frame latent applied to history for {model_type} model.")
else:
print("Warning: history_latents not shaped as expected for end_frame application.")
# Video models use combined methods to prepare clean latents and indices
if model_type == "Video":
# Get num_cleaned_frames from job_params if available, otherwise use default value of 5
num_cleaned_frames = job_params.get('num_cleaned_frames', 5)
clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latents, clean_latents_2x, clean_latents_4x = \
studio_module.current_generator.video_prepare_clean_latents_and_indices(end_frame_output_dimensions_latent, end_frame_strength, end_clip_embedding, end_of_input_video_embedding, latent_paddings, latent_padding, latent_padding_size, latent_window_size, video_latents, history_latents, num_cleaned_frames)
elif model_type == "Video F1":
# Get num_cleaned_frames from job_params if available, otherwise use default value of 5
num_cleaned_frames = job_params.get('num_cleaned_frames', 5)
clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latents, clean_latents_2x, clean_latents_4x = \
studio_module.current_generator.video_f1_prepare_clean_latents_and_indices(latent_window_size, video_latents, history_latents, num_cleaned_frames)
else:
# Prepare indices using the generator
clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices = studio_module.current_generator.prepare_indices(latent_padding_size, latent_window_size)
# Prepare clean latents using the generator
clean_latents, clean_latents_2x, clean_latents_4x = studio_module.current_generator.prepare_clean_latents(start_latent, history_latents)
# Print debug info
print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, latent_padding={latent_padding}")
if not high_vram:
# Unload VAE etc. before loading transformer
unload_complete_models(vae, text_encoder, text_encoder_2, image_encoder)
move_model_to_device_with_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
if selected_loras:
studio_module.current_generator.move_lora_adapters_to_device(gpu)
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
generated_latents = sample_hunyuan(
transformer=studio_module.current_generator.transformer,
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=random_generator,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
# RT_BORG: Observe the MagCache skip patterns during dev.
# RT_BORG: We need to use a real logger soon!
# if magcache is not None and magcache.is_enabled:
# print(f"MagCache skipped: {len(magcache.steps_skipped_list)} of {steps} steps: {magcache.steps_skipped_list}")
total_generated_latent_frames += int(generated_latents.shape[2])
# Update history latents using the generator
history_latents = studio_module.current_generator.update_history_latents(history_latents, generated_latents)
if not high_vram:
if selected_loras:
studio_module.current_generator.move_lora_adapters_to_device(cpu)
offload_model_from_device_for_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
# Get real history latents using the generator
real_history_latents = studio_module.current_generator.get_real_history_latents(history_latents, total_generated_latent_frames)
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = studio_module.current_generator.get_section_latent_frames(latent_window_size, is_last_section)
overlapped_frames = latent_window_size * 4 - 3
# Get current pixels using the generator
current_pixels = studio_module.current_generator.get_current_pixels(real_history_latents, section_latent_frames, vae)
# Update history pixels using the generator
history_pixels = studio_module.current_generator.update_history_pixels(history_pixels, current_pixels, overlapped_frames)
print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, history_pixels shape: {history_pixels.shape}")
if not high_vram:
unload_complete_models()
output_filename = os.path.join(output_dir, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=settings.get("mp4_crf"))
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream_to_use.output_queue.push(('file', output_filename))
if is_last_section:
break
section_idx += 1 # PROMPT BLENDING: increment section index
# We'll handle combining the videos after the entire generation is complete
# This section intentionally left empty to remove the in-process combination
# --- END Main generation loop ---
magcache = studio_module.current_generator.transformer.magcache
if magcache is not None:
if magcache.is_calibrating:
output_file = os.path.join(settings.get("output_dir"), "magcache_configuration.txt")
print(f"MagCache calibration job complete. Appending stats to configuration file: {output_file}")
magcache.append_calibration_to_file(output_file)
elif magcache.is_enabled:
print(f"MagCache ({100.0 * magcache.total_cache_hits / magcache.total_cache_requests:.2f}%) skipped {magcache.total_cache_hits} of {magcache.total_cache_requests} steps.")
studio_module.current_generator.transformer.uninstall_magcache()
magcache = None
# Handle the results
result = pipeline.handle_results(job_params, output_filename)
# Unload all LoRAs after generation completed
if selected_loras:
print("Unloading all LoRAs after generation completed")
studio_module.current_generator.unload_loras()
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
traceback.print_exc()
# Unload all LoRAs after error
if studio_module.current_generator is not None and selected_loras:
print("Unloading all LoRAs after error")
studio_module.current_generator.unload_loras()
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
stream_to_use.output_queue.push(('error', f"Error during generation: {traceback.format_exc()}"))
if not high_vram:
# Ensure all models including the potentially active transformer are unloaded on error
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae,
studio_module.current_generator.transformer if studio_module.current_generator else None
)
finally:
# This finally block is associated with the main try block (starts around line 154)
if settings.get("clean_up_videos"):
try:
video_files = [
f for f in os.listdir(output_dir)
if f.startswith(f"{job_id}_") and f.endswith(".mp4")
]
print(f"Video files found for cleanup: {video_files}")
if video_files:
def get_frame_count(filename):
try:
# Handles filenames like jobid_123.mp4
return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
except Exception:
return -1
video_files_sorted = sorted(video_files, key=get_frame_count)
print(f"Sorted video files: {video_files_sorted}")
final_video = video_files_sorted[-1]
for vf in video_files_sorted[:-1]:
full_path = os.path.join(output_dir, vf)
try:
os.remove(full_path)
print(f"Deleted intermediate video: {full_path}")
except Exception as e:
print(f"Failed to delete {full_path}: {e}")
except Exception as e:
print(f"Error during video cleanup: {e}")
# Check if the user wants to combine the source video with the generated video
# This is done after the video cleanup routine to ensure the combined video is not deleted
# RT_BORG: Retain (but suppress) this original way to combine videos until the new combiner is proven.
combine_v1 = False
if combine_v1 and (model_type == "Video" or model_type == "Video F1") and combine_with_source and job_params.get('input_image_path'):
print("Creating combined video with source and generated content...")
try:
input_video_path = job_params.get('input_image_path')
if input_video_path and os.path.exists(input_video_path):
final_video_path_for_combine = None # Use a different variable name to avoid conflict
video_files_for_combine = [
f for f in os.listdir(output_dir)
if f.startswith(f"{job_id}_") and f.endswith(".mp4") and "combined" not in f
]
if video_files_for_combine:
def get_frame_count_for_combine(filename): # Renamed to avoid conflict
try:
return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
except Exception:
return float('inf')
video_files_sorted_for_combine = sorted(video_files_for_combine, key=get_frame_count_for_combine)
if video_files_sorted_for_combine: # Check if the list is not empty
final_video_path_for_combine = os.path.join(output_dir, video_files_sorted_for_combine[-1])
if final_video_path_for_combine and os.path.exists(final_video_path_for_combine):
combined_output_filename = os.path.join(output_dir, f'{job_id}_combined_v1.mp4')
combined_result = None
try:
if hasattr(studio_module.current_generator, 'combine_videos'):
print(f"Using VideoModelGenerator.combine_videos to create side-by-side comparison")
combined_result = studio_module.current_generator.combine_videos(
source_video_path=input_video_path,
generated_video_path=final_video_path_for_combine, # Use the correct variable
output_path=combined_output_filename
)
if combined_result:
print(f"Combined video saved to: {combined_result}")
stream_to_use.output_queue.push(('file', combined_result))
else:
print("Failed to create combined video, falling back to direct ffmpeg method")
combined_result = None
else:
print("VideoModelGenerator does not have combine_videos method. Using fallback method.")
except Exception as e_combine: # Use a different exception variable name
print(f"Error in combine_videos method: {e_combine}")
print("Falling back to direct ffmpeg method")
combined_result = None
if not combined_result:
print("Using fallback method to combine videos")
from modules.toolbox.toolbox_processor import VideoProcessor
from modules.toolbox.message_manager import MessageManager
message_manager = MessageManager()
# Pass settings.settings if it exists, otherwise pass the settings object
video_processor_settings = settings.settings if hasattr(settings, 'settings') else settings
video_processor = VideoProcessor(message_manager, video_processor_settings)
ffmpeg_exe = video_processor.ffmpeg_exe
if ffmpeg_exe:
print(f"Using ffmpeg at: {ffmpeg_exe}")
import subprocess
temp_list_file = os.path.join(output_dir, f'{job_id}_filelist.txt')
with open(temp_list_file, 'w') as f:
f.write(f"file '{input_video_path}'\n")
f.write(f"file '{final_video_path_for_combine}'\n") # Use the correct variable
ffmpeg_cmd = [
ffmpeg_exe, "-y", "-f", "concat", "-safe", "0",
"-i", temp_list_file, "-c", "copy", combined_output_filename
]
print(f"Running ffmpeg command: {' '.join(ffmpeg_cmd)}")
subprocess.run(ffmpeg_cmd, check=True, capture_output=True, text=True)
if os.path.exists(temp_list_file):
os.remove(temp_list_file)
print(f"Combined video saved to: {combined_output_filename}")
stream_to_use.output_queue.push(('file', combined_output_filename))
else:
print("FFmpeg executable not found. Cannot combine videos.")
else:
print(f"Final video not found for combining with source: {final_video_path_for_combine}")
else:
print(f"Input video path not found: {input_video_path}")
except Exception as e_combine_outer: # Use a different exception variable name
print(f"Error combining videos: {e_combine_outer}")
traceback.print_exc()
# Combine input frames (resized and center cropped if needed) with final generated history_pixels tensor sequentially ---
# This creates ID_combined.mp4
# RT_BORG: Be sure to add this check if we decide to retain the processed input frames for "small" input videos
# and job_params.get('input_frames_resized_np') is not None
if (model_type == "Video" or model_type == "Video F1") and combine_with_source and history_pixels is not None:
print(f"Creating combined video ({job_id}_combined.mp4) with processed input frames and generated history_pixels tensor...")
try:
# input_frames_resized_np = job_params.get('input_frames_resized_np')
# RT_BORG: I cringe calliing methods on BaseModelGenerator that only exist on VideoBaseGenerator, until we refactor
input_frames_resized_np, fps, target_height, target_width = studio_module.current_generator.extract_video_frames(
is_for_encode=False,
video_path=job_params['input_image'],
resolution=job_params['resolutionW'],
no_resize=False,
input_files_dir=job_params['input_files_dir']
)
# history_pixels is (B, C, T, H, W), float32, [-1,1], on CPU
if input_frames_resized_np is not None and history_pixels.numel() > 0 : # Check if history_pixels is not empty
combined_sequential_output_filename = os.path.join(output_dir, f'{job_id}_combined.mp4')
# fps variable should be from the video_encode call earlier.
input_video_fps_for_combine = fps
current_crf = settings.get("mp4_crf", 16)
# Call the new function from video_tools.py
combined_sequential_result_path = combine_videos_sequentially_from_tensors(
processed_input_frames_np=input_frames_resized_np,
generated_frames_pt=history_pixels,
output_path=combined_sequential_output_filename,
target_fps=input_video_fps_for_combine,
crf_value=current_crf
)
if combined_sequential_result_path:
stream_to_use.output_queue.push(('file', combined_sequential_result_path))
except Exception as e:
print(f"Error creating combined video ({job_id}_combined.mp4): {e}")
traceback.print_exc()
# Final verification of LoRA state
if studio_module.current_generator and studio_module.current_generator.transformer:
# Verify LoRA state
has_loras = False
if hasattr(studio_module.current_generator.transformer, 'peft_config'):
adapter_names = list(studio_module.current_generator.transformer.peft_config.keys()) if studio_module.current_generator.transformer.peft_config else []
if adapter_names:
has_loras = True
print(f"Transformer has LoRAs: {', '.join(adapter_names)}")
else:
print(f"Transformer has no LoRAs in peft_config")
else:
print(f"Transformer has no peft_config attribute")
# Check for any LoRA modules
for name, module in studio_module.current_generator.transformer.named_modules():
if hasattr(module, 'lora_A') and module.lora_A:
has_loras = True
if hasattr(module, 'lora_B') and module.lora_B:
has_loras = True
if not has_loras:
print(f"No LoRA components found in transformer")
stream_to_use.output_queue.push(('end', None))
return