Spaces:
Running
on
Zero
Running
on
Zero
#! /usr/bin/env python | |
import json | |
import os | |
import time | |
import click | |
import numpy as np | |
import torch | |
from genmo.lib.progress import progress_bar | |
from genmo.lib.utils import save_video | |
from genmo.mochi_preview.pipelines_multi_frames_release import ( | |
DecoderModelFactory, | |
EncoderModelFactory, | |
DitModelFactory, | |
MochiMultiGPUPipeline, | |
MochiSingleGPUPipeline, | |
T5ModelFactory, | |
linear_quadratic_schedule, | |
) | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
import random | |
import string | |
from lightning.pytorch import LightningDataModule | |
from genmo.mochi_preview.vae.models import Encoder, add_fourier_features | |
from genmo.mochi_preview.vae.latent_dist import LatentDistribution | |
import torchvision | |
from einops import rearrange | |
from safetensors.torch import load_file | |
from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full | |
from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents | |
pipeline = None | |
model_dir_path = None | |
num_gpus = torch.cuda.device_count() | |
cpu_offload = False | |
dit_path = None | |
def configure_model(model_dir_path_, dit_path_, cpu_offload_): | |
global model_dir_path, dit_path, cpu_offload | |
model_dir_path = model_dir_path_ | |
dit_path = dit_path_ | |
cpu_offload = cpu_offload_ | |
def load_model(): | |
global num_gpus, pipeline, model_dir_path, dit_path | |
if pipeline is None: | |
MOCHI_DIR = model_dir_path | |
print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.") | |
klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline | |
kwargs = dict( | |
text_encoder_factory=T5ModelFactory(), | |
dit_factory=DitModelFactory( | |
model_path=dit_path, | |
model_dtype="bf16" | |
), | |
decoder_factory=DecoderModelFactory( | |
model_path=f"{MOCHI_DIR}/decoder.safetensors", | |
), | |
encoder_factory=EncoderModelFactory( | |
model_path=f"{MOCHI_DIR}/encoder.safetensors", | |
), | |
) | |
if num_gpus > 1: | |
assert not cpu_offload, "CPU offload not supported in multi-GPU mode" | |
kwargs["world_size"] = num_gpus | |
else: | |
kwargs["cpu_offload"] = cpu_offload | |
# kwargs["decode_type"] = "tiled_full" | |
kwargs["decode_type"] = "tiled_spatial" | |
pipeline = klass(**kwargs) | |
def generate_video( | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_frames, | |
seed, | |
cfg_scale, | |
num_inference_steps, | |
data_path, | |
multi_cond=None, | |
): | |
load_model() | |
global dit_path | |
# sigma_schedule should be a list of floats of length (num_inference_steps + 1), | |
# such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing. | |
sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025) | |
# cfg_schedule should be a list of floats of length num_inference_steps. | |
# For simplicity, we just use the same cfg scale at all timesteps, | |
# but more optimal schedules may use varying cfg, e.g: | |
# [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2) | |
cfg_schedule = [cfg_scale] * num_inference_steps | |
args = { | |
"height": height, | |
"width": width, | |
"num_frames": num_frames, | |
"sigma_schedule": sigma_schedule, | |
"cfg_schedule": cfg_schedule, | |
"num_inference_steps": num_inference_steps, | |
# We *need* flash attention to batch cfg | |
# and it's only worth doing in a high-memory regime (assume multiple GPUs) | |
"batch_cfg": False, | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"seed": seed, | |
"data_path": data_path, | |
"condition_image": multi_cond["tensors"], | |
"condition_frame_idx": multi_cond["positions"], | |
"noise_multiplier": multi_cond["noise_multipliers"] | |
} | |
with progress_bar(type="tqdm"): | |
final_frames = pipeline(**args) | |
final_frames = final_frames[0] | |
assert isinstance(final_frames, np.ndarray) | |
assert final_frames.dtype == np.float32 | |
# Create a results directory based on model name and timestamp | |
model_name = os.path.basename(dit_path.split('/')[-2]) | |
checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0] | |
# Use datetime format for timestamp_dir | |
from datetime import datetime | |
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Generate descriptive prefix for the result filename | |
positions_str = multi_cond["positions"] | |
cond_position = f"multi_{positions_str}" | |
noise_multiplier = multi_cond["noise_multipliers"] | |
results_base_dir = "./video_test_demos_results" | |
results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_github_user_demo_{cond_position}pos_{num_inference_steps}steps_crop_{noise_multiplier}sigma") | |
os.makedirs(results_dir, exist_ok=True) | |
output_path = os.path.join( | |
results_dir, | |
f"{timestamp_str}.mp4" | |
) | |
save_video(final_frames, output_path) | |
return output_path | |
from textwrap import dedent | |
def generate_cli( | |
prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir, | |
dit_path, cpu_offload, data_path, multi_cond | |
): | |
configure_model(model_dir, dit_path, cpu_offload) | |
config = dict( | |
prune_bottlenecks=[False, False, False, False, False], | |
has_attentions=[False, True, True, True, True], | |
affine=True, | |
bias=True, | |
input_is_conv_1x1=True, | |
padding_mode="replicate", | |
) | |
# Create VAE encoder | |
encoder = Encoder( | |
in_channels=15, | |
base_channels=64, | |
channel_multipliers=[1, 2, 4, 6], | |
num_res_blocks=[3, 3, 4, 6, 3], | |
latent_dim=12, | |
temporal_reductions=[1, 2, 3], | |
spatial_reductions=[2, 2, 2], | |
**config, | |
) | |
device = torch.device("cuda:0") | |
encoder = encoder.to(device, memory_format=torch.channels_last_3d) | |
encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors")) | |
encoder.eval() | |
# Process multi-conditional inputs | |
# Parse JSON input for multiple conditioning | |
import json | |
conditions = json.loads(multi_cond) | |
# Create structures to store tensors, and noise multipliers | |
latent_tensors = [] | |
noise_multipliers = [] | |
positions = [] | |
# Process each conditioning position | |
for pos, cond_info in conditions.items(): | |
img_dir, noise_mult = cond_info | |
pos = int(pos) | |
positions.append(pos) | |
# Load image and encode | |
from PIL import Image | |
import torchvision.transforms as transforms | |
# Load the image | |
image = Image.open(img_dir) | |
# Crop and resize the image | |
target_ratio = width / height | |
current_ratio = image.width / image.height | |
if current_ratio > target_ratio: | |
new_width = int(image.height * target_ratio) | |
x1 = (image.width - new_width) // 2 | |
image = image.crop((x1, 0, x1 + new_width, image.height)) | |
else: | |
new_height = int(image.width / target_ratio) | |
y1 = (image.height - new_height) // 2 | |
image = image.crop((0, y1, image.width, y1 + new_height)) | |
# Resize the cropped image | |
transform = transforms.Compose([ | |
transforms.Resize((height, width)), | |
transforms.ToTensor(), | |
]) | |
image_tensor = (transform(image) * 2 - 1).unsqueeze(1).unsqueeze(0) | |
image_tensor = add_fourier_features(image_tensor.to(device)) | |
# Encode image to latent | |
with torch.inference_mode(): | |
with torch.autocast("cuda", dtype=torch.bfloat16): | |
encoder = encoder.to(device) | |
ldist = encoder(image_tensor) | |
image_latent = ldist.sample() | |
# Store the individual latent tensor for this position | |
latent_tensors.append(image_latent[:, :, 0, :, :]) | |
# Store noise multiplier | |
noise_multipliers.append(float(noise_mult) if noise_mult else 0.3) | |
# Clean up to save memory | |
del ldist, image_tensor | |
torch.cuda.empty_cache() | |
# Build multi-condition data structure | |
multi_cond_data = { | |
"tensors": latent_tensors, # Dict of position -> tensor | |
"positions": positions, # Dict of position -> noise multiplier | |
"noise_multipliers": noise_multipliers, # Dict of position -> noise multiplier | |
} | |
prompt = prompt | |
with torch.inference_mode(): | |
output = generate_video( | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_frames, | |
seed, | |
cfg_scale, | |
num_steps, | |
data_path, | |
multi_cond=multi_cond_data, | |
) | |
click.echo(f"Video generated at: {output}") | |
return | |
if __name__ == "__main__": | |
generate_cli() | |