PusaV1 / demos /cli_test_transition_release.py
rahul7star's picture
Migrated from GitHub
96257b2 verified
#! /usr/bin/env python
import json
import os
import time
import click
import numpy as np
import torch
from genmo.lib.progress import progress_bar
from genmo.lib.utils import save_video
from genmo.mochi_preview.pipelines_v2v_release import (
DecoderModelFactory,
EncoderModelFactory,
DitModelFactory,
MochiMultiGPUPipeline,
MochiSingleGPUPipeline,
T5ModelFactory,
linear_quadratic_schedule,
)
import torch
from torch.utils.data import Dataset, DataLoader
import random
import string
from lightning.pytorch import LightningDataModule
from genmo.mochi_preview.vae.models import Encoder, add_fourier_features
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
import torchvision
from einops import rearrange
from safetensors.torch import load_file
from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full
from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents
pipeline = None
model_dir_path = None
num_gpus = torch.cuda.device_count()
cpu_offload = False
dit_path = None
def configure_model(model_dir_path_, dit_path_, cpu_offload_):
global model_dir_path, dit_path, cpu_offload
model_dir_path = model_dir_path_
dit_path = dit_path_
cpu_offload = cpu_offload_
def load_model():
global num_gpus, pipeline, model_dir_path, dit_path
if pipeline is None:
MOCHI_DIR = model_dir_path
print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.")
klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline
kwargs = dict(
text_encoder_factory=T5ModelFactory(),
dit_factory=DitModelFactory(
model_path=dit_path,
model_dtype="bf16"
),
decoder_factory=DecoderModelFactory(
model_path=f"{MOCHI_DIR}/decoder.safetensors",
),
encoder_factory=EncoderModelFactory(
model_path=f"{MOCHI_DIR}/encoder.safetensors",
),
)
if num_gpus > 1:
assert not cpu_offload, "CPU offload not supported in multi-GPU mode"
kwargs["world_size"] = num_gpus
else:
kwargs["cpu_offload"] = cpu_offload
# kwargs["decode_type"] = "tiled_full"
kwargs["decode_type"] = "tiled_spatial"
pipeline = klass(**kwargs)
def generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_inference_steps,
data_path,
input_image=None,
):
load_model()
global dit_path
# sigma_schedule should be a list of floats of length (num_inference_steps + 1),
# such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing.
sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025)
# cfg_schedule should be a list of floats of length num_inference_steps.
# For simplicity, we just use the same cfg scale at all timesteps,
# but more optimal schedules may use varying cfg, e.g:
# [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2)
cfg_schedule = [cfg_scale] * num_inference_steps
args = {
"height": height,
"width": width,
"num_frames": num_frames,
"sigma_schedule": sigma_schedule,
"cfg_schedule": cfg_schedule,
"num_inference_steps": num_inference_steps,
# We *need* flash attention to batch cfg
# and it's only worth doing in a high-memory regime (assume multiple GPUs)
"batch_cfg": False,
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": seed,
"data_path": data_path,
}
# Handle different input types
if input_image is not None:
# if "tensor" in input_image:
# Check if this is an image tensor (for image conditioning) or latent tensor
# if len(input_image["tensor"].shape) == 4: # [B, C, H, W] - image tensor
# This is an image tensor, prepare it for conditioning
# cond_position = input_image.get("cond_position", 0)
args["condition_image"] = input_image["tensor"]
args["condition_frame_idx"] = input_image["cond_position"]
args["noise_multiplier"] = input_image["noise_multiplier"]
# else: # Latent tensor
# args["input_image"] = input_image["tensor"]
# print(args)
with progress_bar(type="tqdm"):
final_frames = pipeline(**args)
final_frames = final_frames[0]
assert isinstance(final_frames, np.ndarray)
assert final_frames.dtype == np.float32
# Create a results directory based on model name and timestamp
model_name = os.path.basename(dit_path.split('/')[-2])
checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0]
# Use datetime format for timestamp_dir
from datetime import datetime
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
cond_position = input_image["cond_position"]
results_base_dir = "./video_test_demos_results"
results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_dawn_{cond_position}pos_{num_inference_steps}steps_0sigma")
os.makedirs(results_dir, exist_ok=True)
# Extract filename from input_image if available
filename_prefix = ""
if isinstance(input_image, dict) and "filename" in input_image:
filename_prefix = f"{os.path.basename(input_image['filename']).split('.')[0]}_"
output_path = os.path.join(
results_dir,
f"{filename_prefix}{timestamp_str}.mp4"
)
save_video(final_frames, output_path)
json_path = os.path.splitext(output_path)[0] + ".json"
# Save args to JSON but remove input_image tensor and convert non-serializable objects
json_args = args.copy()
# Handle input_image for JSON serialization
if "input_image" in json_args:
json_args["input_image"] = None
# Handle condition_image for JSON serialization
if "condition_image" in json_args:
json_args["condition_image"] = "Image tensor (removed for JSON)"
if isinstance(input_image, dict):
json_args["input_filename"] = input_image.get("filename", None)
if "cond_position" in input_image:
json_args["condition_frame_idx"] = input_image["cond_position"]
# Convert sigma_schedule and cfg_schedule from tensors to lists if needed
if isinstance(json_args["sigma_schedule"], torch.Tensor):
json_args["sigma_schedule"] = json_args["sigma_schedule"].tolist()
if isinstance(json_args["cfg_schedule"], torch.Tensor):
json_args["cfg_schedule"] = json_args["cfg_schedule"].tolist()
# Handle prompt if it's a tensor or other non-serializable object
if not isinstance(json_args["prompt"], (str, type(None))):
if hasattr(json_args["prompt"], "tolist"):
json_args["prompt"] = "Tensor prompt (converted to string for JSON)"
else:
json_args["prompt"] = str(json_args["prompt"])
# Handle negative_prompt if it's a tensor
if not isinstance(json_args["negative_prompt"], (str, type(None))):
if hasattr(json_args["negative_prompt"], "tolist"):
json_args["negative_prompt"] = "Tensor negative prompt (converted to string for JSON)"
else:
json_args["negative_prompt"] = str(json_args["negative_prompt"])
json.dump(json_args, open(json_path, "w"), indent=4)
return output_path
from textwrap import dedent
@click.command()
@click.option("--prompt", default="A man is playing the basketball", help="Prompt for video generation.")
@click.option("--negative_prompt", default="", help="Negative prompt for video generation.")
@click.option("--width", default=848, type=int, help="Width of the video.")
@click.option("--height", default=480, type=int, help="Height of the video.")
@click.option("--num_frames", default=163, type=int, help="Number of frames.")
@click.option("--seed", default=1710977262, type=int, help="Random seed.")
@click.option("--cfg_scale", default=4.5, type=float, help="CFG Scale.")
@click.option("--num_steps", default=64, type=int, help="Number of inference steps.")
@click.option("--model_dir", required=True, help="Path to the model directory.")
@click.option("--dit_path", required=True, help="Path to the dit model directory.")
@click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU")
@click.option("--data_path", required=True, default="/home/dyvm6xra/dyvm6xrauser02/data/vidgen1m", help="Path to the data directory.")
@click.option("--video_start_dir", default=None, help="Path to the start conditioning video.")
@click.option("--video_end_dir", default=None, help="Path to the end conditioning video.")
@click.option("--prompt_dir", default=None, help="Path to directory containing prompt text files.")
@click.option("--cond_position_start", default="[0,1,2]", type=str, help="Frame positions list to place the start conditioning video, position from 0 to 27.")
@click.option("--cond_position_end", default="[-3,-2,-1]", type=str, help="Frame positions list to place the end conditioning video, position from 0 to 27.")
@click.option("--noise_multiplier", default="[0.1,0.3,0.3,0.3,0.3,0.3]", type=str, help="Noise multiplier for noise on the conditioning positions, length must match len(cond_position_start) + len(cond_position_end).")
def generate_cli(
prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir,
dit_path, cpu_offload, data_path, video_start_dir, video_end_dir, prompt_dir, cond_position_start, cond_position_end, noise_multiplier
):
configure_model(model_dir, dit_path, cpu_offload)
config = dict(
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate",
)
# Create VAE encoder
encoder = Encoder(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
**config,
)
device = torch.device("cuda:0")
encoder = encoder.to(device, memory_format=torch.channels_last_3d)
encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors"))
encoder.eval()
# Import required libraries
import cv2
import torchvision.transforms as transforms
from PIL import Image
def process_video(video_path, width, height):
"""Process a video file and return a tensor of normalized frames"""
if not os.path.isfile(video_path):
click.echo(f"Video file not found: {video_path}")
return None
click.echo(f"Processing video: {video_path}")
cap = cv2.VideoCapture(video_path)
frames = []
# Read frames from video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
if not frames:
click.echo(f"Error: Could not read frames from video {video_path}")
return None
print(f"Loaded {len(frames)} frames from video {os.path.basename(video_path)}")
# Process frames - crop and resize
processed_frames = []
transform = transforms.Compose([
transforms.ToTensor(),
])
target_ratio = width / height
for frame in frames:
# Convert to PIL for easier processing
pil_frame = Image.fromarray(frame)
# Calculate crop dimensions to maintain aspect ratio
current_ratio = pil_frame.width / pil_frame.height
if current_ratio > target_ratio:
# Frame is wider than target ratio - crop width
new_width = int(pil_frame.height * target_ratio)
x1 = (pil_frame.width - new_width) // 2
pil_frame = pil_frame.crop((x1, 0, x1 + new_width, pil_frame.height))
else:
# Frame is taller than target ratio - crop height
new_height = int(pil_frame.width / target_ratio)
y1 = (pil_frame.height - new_height) // 2
pil_frame = pil_frame.crop((0, y1, pil_frame.width, y1 + new_height))
# Resize the cropped frame
pil_frame = pil_frame.resize((width, height), Image.LANCZOS)
# Convert to tensor
frame_tensor = transform(pil_frame)
processed_frames.append(frame_tensor)
# Stack frames into a single tensor [T, C, H, W]
video_tensor = torch.stack(processed_frames)
# Normalize to [-1, 1]
video_tensor = video_tensor * 2 - 1
# Add batch dimension [1, T, C, H, W]
video_tensor = video_tensor.unsqueeze(0)
return video_tensor, os.path.basename(video_path)
# Process start and end videos if provided
start_tensor = None
end_tensor = None
filename_parts = []
if video_start_dir and os.path.isfile(video_start_dir):
start_result = process_video(video_start_dir, width, height)
if start_result:
start_tensor, start_filename = start_result
filename_parts.append(os.path.splitext(start_filename)[0])
if video_end_dir and os.path.isfile(video_end_dir):
end_result = process_video(video_end_dir, width, height)
if end_result:
end_tensor, end_filename = end_result
filename_parts.append(os.path.splitext(end_filename)[0])
# Concatenate tensors if both are available
if start_tensor is not None and end_tensor is not None:
# Ensure both tensors have the same number of frames
min_frames = min(start_tensor.shape[1], end_tensor.shape[1], 82)
start_tensor = start_tensor[:, :min_frames]
print(f"Start video tensor shape: {start_tensor.shape}")
# import ipdb;ipdb.set_trace()
end_tensor = end_tensor[:, :min_frames-1]
print(f"End video tensor shape: {end_tensor.shape}")
# Rearrange tensors to [B, C, T, H, W] format for temporal concatenation
start_tensor_rearranged = start_tensor.permute(0, 2, 1, 3, 4) # [1, 3, 82, 480, 848]
end_tensor_rearranged = end_tensor.permute(0, 2, 1, 3, 4) # [1, 3, 81, 480, 848]
# Concatenate along dimension 2 (temporal dimension in the rearranged format)
combined_tensor = torch.cat([start_tensor_rearranged, end_tensor_rearranged], dim=2)
print(f"Combined tensor shape after temporal concatenation: {combined_tensor.shape}")
# Add Fourier features and encode to latent
combined_tensor = add_fourier_features(combined_tensor.to(device))
with torch.inference_mode():
with torch.autocast("cuda", dtype=torch.bfloat16):
t0 = time.time()
encoder = encoder.to(device)
ldist = encoder(combined_tensor)
image_tensor = ldist.sample()
print(f"Encoding took {time.time() - t0:.2f} seconds")
# Move encoder to CPU to free GPU memory
torch.cuda.empty_cache()
encoder = encoder.to("cpu")
del ldist
# Create combined filename
combined_filename = "_and_".join(filename_parts)
# Parse string representations of position lists to actual lists
cond_position_start_list = eval(cond_position_start)
cond_position_end_list = eval(cond_position_end)
cond_position = cond_position_start_list + cond_position_end_list
# Package input for generate_video
input_image = {
"tensor": image_tensor,
"filename": combined_filename,
"cond_position": cond_position,
"noise_multiplier": noise_multiplier
}
with torch.inference_mode():
output = generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_steps,
data_path,
input_image,
)
click.echo(f"Video generated at: {output}")
return
if __name__ == "__main__":
generate_cli()