PusaV1 / src /genmo /pusa /vae /models.py
rahul7star's picture
Migrated from GitHub
96257b2 verified
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import torch.distributed as dist
import genmo.mochi_preview.dit.joint_model.context_parallel as cp
from genmo.lib.progress import get_new_progress_bar
from genmo.mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
import genmo.mochi_preview.vae.cp_conv as cp_conv
def cast_tuple(t, length=1):
return t if isinstance(t, tuple) else ((t,) * length)
class GroupNormSpatial(nn.GroupNorm):
"""
GroupNorm applied per-frame.
"""
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> (B T) C H W")
# Run group norm in chunks.
output = torch.empty_like(x)
for b in range(0, B * T, chunk_size):
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
class SafeConv3d(torch.nn.Conv3d):
"""
NOTE: No support for padding along time dimension.
Input must already be padded along time.
"""
def forward(self, input):
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
if memory_count > 2 and self.stride[0] == 1:
part_num = int(memory_count / 2) + 1
k = self.kernel_size[0]
input_idx = torch.arange(k - 1, input.size(2))
input_chunks_idx = torch.chunk(input_idx, part_num, dim=0)
# assert self.stride[0] == 1, f"stride {self.stride}"
assert self.dilation[0] == 1, f"dilation {self.dilation}"
assert self.padding[0] == 0, f"padding {self.padding}"
# Comptue output size
assert not input.requires_grad
B, _, T_in, H_in, W_in = input.shape
output_size = (
B,
self.out_channels,
T_in - k + 1,
H_in // self.stride[1],
W_in // self.stride[2],
)
output = torch.empty(output_size, dtype=input.dtype, device=input.device)
for input_chunk_idx in input_chunks_idx:
input_s = input_chunk_idx[0] - k + 1
input_e = input_chunk_idx[-1] + 1
input_chunk = input[:, :, input_s:input_e, :, :]
output_chunk = super(SafeConv3d, self).forward(input_chunk)
output_s = input_s
output_e = output_s + output_chunk.size(2)
output[:, :, output_s:output_e, :, :] = output_chunk
return output
else:
return super(SafeConv3d, self).forward(input)
class StridedSafeConv3d(torch.nn.Conv3d):
def forward(self, input, local_shard: bool = False):
assert self.stride[0] == self.kernel_size[0]
assert self.dilation[0] == 1
assert self.padding[0] == 0
kernel_size = self.kernel_size[0]
stride = self.stride[0]
T_in = input.size(2)
T_out = T_in // kernel_size
# Parallel implementation.
if local_shard:
idx = torch.arange(T_out)
idx = cp.local_shard(idx, dim=0)
start = idx.min() * stride
end = idx.max() * stride + kernel_size
local_input = input[:, :, start:end, :, :]
return torch.nn.Conv3d.forward(self, local_input)
raise NotImplementedError
class ContextParallelConv3d(SafeConv3d):
def __init__(
self,
in_channels,
out_channels,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]],
causal: bool = True,
context_parallel: bool = True,
**kwargs,
):
self.causal = causal
self.context_parallel = context_parallel
kernel_size = cast_tuple(kernel_size, 3)
stride = cast_tuple(stride, 3)
height_pad = (kernel_size[1] - 1) // 2
width_pad = (kernel_size[2] - 1) // 2
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=(1, 1, 1),
padding=(0, height_pad, width_pad),
**kwargs,
)
def forward(self, x: torch.Tensor):
cp_rank, cp_world_size = cp.get_cp_rank_size()
# Compute padding amounts.
context_size = self.kernel_size[0] - 1
if self.causal:
pad_front = context_size
pad_back = 0
else:
pad_front = context_size // 2
pad_back = context_size - pad_front
# Apply padding.
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
if self.context_parallel and cp_world_size == 1:
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
else:
if cp_rank == 0:
x = F.pad(x, (0, 0, 0, 0, pad_front, 0), mode=mode)
elif cp_rank == cp_world_size - 1 and pad_back:
x = F.pad(x, (0, 0, 0, 0, 0, pad_back), mode=mode)
if self.context_parallel and cp_world_size == 1:
return super().forward(x)
if self.stride[0] == 1:
# Receive some frames from previous rank.
x = cp_pass_frames(x, context_size)
return super().forward(x)
# Less efficient implementation for strided convs.
# All gather x, infer and chunk.
assert x.dtype == torch.bfloat16, f"Expected x to be of type torch.bfloat16, got {x.dtype}"
# if cp_rank == 0:
# print(f"ContextParallelConv3d: cp_rank: {cp_rank}, cp_world_size: {cp_world_size}, x.shape: {x.shape}, context_size: {context_size},self.kernel_size: {self.kernel_size}, self.stride: {self.stride}")
# """print:
# ContextParallelConv3d: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 128, 22, 240, 424]), context_size: 1,self.kernel_size: (2, 2, 2), self.stride: (2, 2, 2)
# ContextParallelConv3d: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 256, 13, 120, 212]), context_size: 2,self.kernel_size: (3, 2, 2), self.stride: (3, 2, 2)
# """
x = gather_all_frames(x) # [B, C, k - 1 + global_T, H, W]
# if cp_rank == 0:
# print(f"gather_all_frames: cp_rank: {cp_rank}, cp_world_size: {cp_world_size}, x.shape: {x.shape}, context_size: {context_size},self.kernel_size: {self.kernel_size}, self.stride: {self.stride}")
# """print:
# gather_all_frames: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 128, 164, 240, 424]), context_size: 1,self.kernel_size: (2, 2, 2), self.stride: (2, 2, 2)
# gather_all_frames: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 256, 84, 120, 212]), context_size: 2,self.kernel_size: (3, 2, 2), self.stride: (3, 2, 2)
# """
return StridedSafeConv3d.forward(self, x, local_shard=True)
class Conv1x1(nn.Linear):
"""*1x1 Conv implemented with a linear layer."""
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
super().__init__(in_features, out_features, *args, **kwargs)
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, *] or [B, *, C].
Returns:
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
"""
x = x.movedim(1, -1)
x = super().forward(x)
x = x.movedim(-1, 1)
return x
class DepthToSpaceTime(nn.Module):
def __init__(
self,
temporal_expansion: int,
spatial_expansion: int,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# When printed, this module should show the temporal and spatial expansion factors.
def extra_repr(self):
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
Returns:
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
"""
x = rearrange(
x,
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
st=self.temporal_expansion,
sh=self.spatial_expansion,
sw=self.spatial_expansion,
)
cp_rank, _ = cp.get_cp_rank_size()
if self.temporal_expansion > 1 and cp_rank == 0:
# Drop the first self.temporal_expansion - 1 frames.
# This is because we always want the 3x3x3 conv filter to only apply
# to the first frame, and the first frame doesn't need to be repeated.
assert all(x.shape)
x = x[:, :, self.temporal_expansion - 1 :]
assert all(x.shape)
return x
def norm_fn(
in_channels: int,
affine: bool = True,
):
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
class ResBlock(nn.Module):
"""Residual block that preserves the spatial dimensions."""
def __init__(
self,
channels: int,
*,
affine: bool = True,
attn_block: Optional[nn.Module] = None,
causal: bool = True,
prune_bottleneck: bool = False,
padding_mode: str,
bias: bool = True,
):
super().__init__()
self.channels = channels
assert causal
self.stack = nn.Sequential(
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
ContextParallelConv3d(
in_channels=channels,
out_channels=channels // 2 if prune_bottleneck else channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=bias,
causal=causal,
),
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
ContextParallelConv3d(
in_channels=channels // 2 if prune_bottleneck else channels,
out_channels=channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=bias,
causal=causal,
),
)
self.attn_block = attn_block if attn_block else nn.Identity()
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
"""
residual = x
x = self.stack(x)
x = x + residual
del residual
return self.attn_block(x)
def prepare_for_attention(qkv: torch.Tensor, head_dim: int, qk_norm: bool = True):
"""Prepare qkv tensor for attention and normalize qk.
Args:
qkv: Input tensor. Shape: [B, L, 3 * num_heads * head_dim].
Returns:
q, k, v: qkv tensor split into q, k, v. Shape: [B, num_heads, L, head_dim].
"""
assert qkv.ndim == 3 # [B, L, 3 * num_heads * head_dim]
assert qkv.size(2) % (3 * head_dim) == 0
num_heads = qkv.size(2) // (3 * head_dim)
qkv = qkv.unflatten(2, (3, num_heads, head_dim))
q, k, v = qkv.unbind(2) # [B, L, num_heads, head_dim]
q = q.transpose(1, 2) # [B, num_heads, L, head_dim]
k = k.transpose(1, 2) # [B, num_heads, L, head_dim]
v = v.transpose(1, 2) # [B, num_heads, L, head_dim]
if qk_norm:
q = F.normalize(q, p=2, dim=-1)
k = F.normalize(k, p=2, dim=-1)
# Mixed precision can change the dtype of normed q/k to float32.
q = q.to(dtype=qkv.dtype)
k = k.to(dtype=qkv.dtype)
return q, k, v
class Attention(nn.Module):
def __init__(
self,
dim: int,
head_dim: int = 32,
qkv_bias: bool = False,
out_bias: bool = True,
qk_norm: bool = True,
) -> None:
super().__init__()
self.head_dim = head_dim
self.num_heads = dim // head_dim
self.qk_norm = qk_norm
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
self.out = nn.Linear(dim, dim, bias=out_bias)
def forward(
self,
x: torch.Tensor,
*,
chunk_size=2**15,
) -> torch.Tensor:
"""Compute temporal self-attention.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
chunk_size: Chunk size for large tensors.
Returns:
x: Output tensor. Shape: [B, C, T, H, W].
"""
B, _, T, H, W = x.shape
if T == 1:
# No attention for single frame.
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
qkv = self.qkv(x)
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
x = self.out(x)
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
# 1D temporal attention.
x = rearrange(x, "B C t h w -> (B h w) t C")
qkv = self.qkv(x)
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
# Output: x with shape [B, num_heads, t, head_dim]
q, k, v = prepare_for_attention(qkv, self.head_dim, qk_norm=self.qk_norm)
attn_kwargs = dict(
attn_mask=None,
dropout_p=0.0,
is_causal=True,
scale=self.head_dim**-0.5,
)
if q.size(0) <= chunk_size:
x = F.scaled_dot_product_attention(q, k, v, **attn_kwargs) # [B, num_heads, t, head_dim]
else:
# Evaluate in chunks to avoid `RuntimeError: CUDA error: invalid configuration argument.`
# Chunks of 2**16 and up cause an error.
x = torch.empty_like(q)
for i in range(0, q.size(0), chunk_size):
qc = q[i : i + chunk_size]
kc = k[i : i + chunk_size]
vc = v[i : i + chunk_size]
chunk = F.scaled_dot_product_attention(qc, kc, vc, **attn_kwargs)
x[i : i + chunk_size].copy_(chunk)
assert x.size(0) == q.size(0)
x = x.transpose(1, 2) # [B, t, num_heads, head_dim]
x = x.flatten(2) # [B, t, num_heads * head_dim]
x = self.out(x)
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
return x
class AttentionBlock(nn.Module):
def __init__(
self,
dim: int,
**attn_kwargs,
) -> None:
super().__init__()
self.norm = norm_fn(dim)
self.attn = Attention(dim, **attn_kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.attn(self.norm(x))
class CausalUpsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks: int,
*,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
**block_kwargs,
):
super().__init__()
blocks = []
for _ in range(num_res_blocks):
blocks.append(block_fn(in_channels, **block_kwargs))
self.blocks = nn.Sequential(*blocks)
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# Change channels in the final convolution layer.
self.proj = Conv1x1(
in_channels,
out_channels * temporal_expansion * (spatial_expansion**2),
)
self.d2st = DepthToSpaceTime(temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion)
def forward(self, x):
x = self.blocks(x)
x = self.proj(x)
x = self.d2st(x)
return x
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
attn_block = AttentionBlock(channels) if has_attention else None
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
num_freqs = (stop - start) // step
assert inputs.ndim == 5
C = inputs.size(1)
# Create Base 2 Fourier features.
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
assert num_freqs == len(freqs)
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
C = inputs.shape[1]
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
# Interleaved repeat of input channels to match w.
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
# Scale channels by frequency.
h = w * h
return torch.cat(
[
inputs,
torch.sin(h),
torch.cos(h),
],
dim=1,
)
class FourierFeatures(nn.Module):
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
super().__init__()
self.start = start
self.stop = stop
self.step = step
def forward(self, inputs):
"""Add Fourier features to inputs.
Args:
inputs: Input tensor. Shape: [B, C, T, H, W]
Returns:
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
"""
return add_fourier_features(inputs, self.start, self.stop, self.step)
class Decoder(nn.Module):
def __init__(
self,
*,
out_channels: int = 3,
latent_dim: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
temporal_expansions: Optional[List[int]] = None,
spatial_expansions: Optional[List[int]] = None,
has_attention: List[bool],
output_norm: bool = True,
nonlinearity: str = "silu",
output_nonlinearity: str = "silu",
causal: bool = True,
**block_kwargs,
):
super().__init__()
self.input_channels = latent_dim
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.output_nonlinearity = output_nonlinearity
assert nonlinearity == "silu"
assert causal
ch = [mult * base_channels for mult in channel_multipliers]
self.num_up_blocks = len(ch) - 1
assert len(num_res_blocks) == self.num_up_blocks + 2
blocks = []
new_block_fn = partial(block_fn, padding_mode="replicate")
first_block = [nn.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))] # Input layer.
# First set of blocks preserve channel count.
for _ in range(num_res_blocks[-1]):
first_block.append(
new_block_fn(
ch[-1],
has_attention=has_attention[-1],
causal=causal,
**block_kwargs,
)
)
blocks.append(nn.Sequential(*first_block))
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
upsample_block_fn = CausalUpsampleBlock
for i in range(self.num_up_blocks):
block = upsample_block_fn(
ch[-i - 1],
ch[-i - 2],
num_res_blocks=num_res_blocks[-i - 2],
has_attention=has_attention[-i - 2],
temporal_expansion=temporal_expansions[-i - 1],
spatial_expansion=spatial_expansions[-i - 1],
causal=causal,
padding_mode="replicate",
**block_kwargs,
)
blocks.append(block)
assert not output_norm
# Last block. Preserve channel count.
last_block = []
for _ in range(num_res_blocks[0]):
last_block.append(new_block_fn(ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs))
blocks.append(nn.Sequential(*last_block))
self.blocks = nn.ModuleList(blocks)
self.output_proj = Conv1x1(ch[0], out_channels)
def forward(self, x):
"""Forward pass.
Args:
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
Returns:
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
T + 1 = (t - 1) * 4.
H = h * 16, W = w * 16.
"""
for block in self.blocks:
x = block(x)
if self.output_nonlinearity == "silu":
x = F.silu(x, inplace=not self.training)
else:
assert not self.output_nonlinearity # StyleGAN3 omits the to-RGB nonlinearity.
return self.output_proj(x).contiguous()
def make_broadcastable(
tensor: torch.Tensor,
axis: int,
ndim: int,
) -> torch.Tensor:
"""
Reshapes the input tensor to have singleton dimensions in all axes except the specified axis.
Args:
tensor (torch.Tensor): The tensor to reshape. Typically 1D.
axis (int): The axis along which the tensor should retain its original size.
ndim (int): The total number of dimensions the reshaped tensor should have.
Returns:
torch.Tensor: The reshaped tensor with shape suitable for broadcasting.
"""
if tensor.dim() != 1:
raise ValueError(f"Expected tensor to be 1D, but got {tensor.dim()}D tensor.")
axis = (axis + ndim) % ndim # Ensure the axis is within the tensor dimensions
shape = [1] * ndim # Start with all dimensions as 1
shape[axis] = tensor.size(0) # Set the specified axis to the size of the tensor
return tensor.view(*shape)
def blend(a: torch.Tensor, b: torch.Tensor, axis: int) -> torch.Tensor:
"""
Blends two tensors `a` and `b` along the specified axis using linear interpolation.
Args:
a (torch.Tensor): The first tensor.
b (torch.Tensor): The second tensor. Must have the same shape as `a`.
axis (int): The axis along which to perform the blending.
Returns:
torch.Tensor: The blended tensor.
"""
assert a.shape == b.shape, f"Tensors must have the same shape, got {a.shape} and {b.shape}"
steps = a.size(axis)
# Create a weight tensor that linearly interpolates from 0 to 1
start = 1 / (steps + 1)
end = steps / (steps + 1)
weight = torch.linspace(start, end, steps=steps, device=a.device, dtype=a.dtype)
# Make the weight tensor broadcastable across all dimensions
weight = make_broadcastable(weight, axis, a.dim())
# Perform the blending
return a * (1 - weight) + b * weight
def blend_horizontal(a: torch.Tensor, b: torch.Tensor, overlap: int) -> torch.Tensor:
if overlap == 0:
return torch.cat([a, b], dim=-1)
assert a.size(-1) >= overlap
assert b.size(-1) >= overlap
a_left, a_overlap = a[..., :-overlap], a[..., -overlap:]
b_overlap, b_right = b[..., :overlap], b[..., overlap:]
return torch.cat([a_left, blend(a_overlap, b_overlap, -1), b_right], dim=-1)
def blend_vertical(a: torch.Tensor, b: torch.Tensor, overlap: int) -> torch.Tensor:
if overlap == 0:
return torch.cat([a, b], dim=-2)
assert a.size(-2) >= overlap
assert b.size(-2) >= overlap
a_top, a_overlap = a[..., :-overlap, :], a[..., -overlap:, :]
b_overlap, b_bottom = b[..., :overlap, :], b[..., overlap:, :]
return torch.cat([a_top, blend(a_overlap, b_overlap, -2), b_bottom], dim=-2)
def nearest_multiple(x: int, multiple: int) -> int:
return round(x / multiple) * multiple
def apply_tiled(
fn: Callable[[torch.Tensor], torch.Tensor],
x: torch.Tensor,
num_tiles_w: int,
num_tiles_h: int,
overlap: int = 0, # Number of pixel of overlap between adjacent tiles.
# Use a factor of 2 times the latent downsample factor.
min_block_size: int = 1, # Minimum number of pixels in each dimension when subdividing.
) -> Optional[torch.Tensor]:
if num_tiles_w == 1 and num_tiles_h == 1:
return fn(x)
assert num_tiles_w & (num_tiles_w - 1) == 0, f"num_tiles_w={num_tiles_w} must be a power of 2"
assert num_tiles_h & (num_tiles_h - 1) == 0, f"num_tiles_h={num_tiles_h} must be a power of 2"
H, W = x.shape[-2:]
assert H % min_block_size == 0
assert W % min_block_size == 0
ov = overlap // 2
assert ov % min_block_size == 0
if num_tiles_w >= 2:
# Subdivide horizontally.
half_W = nearest_multiple(W // 2, min_block_size)
left = x[..., :, : half_W + ov]
right = x[..., :, half_W - ov :]
assert num_tiles_w % 2 == 0, f"num_tiles_w={num_tiles_w} must be even"
left = apply_tiled(fn, left, num_tiles_w // 2, num_tiles_h, overlap, min_block_size)
right = apply_tiled(fn, right, num_tiles_w // 2, num_tiles_h, overlap, min_block_size)
if left is None or right is None:
return None
# If `fn` changed the resolution, adjust the overlap.
resample_factor = left.size(-1) / (half_W + ov)
out_overlap = int(overlap * resample_factor)
return blend_horizontal(left, right, out_overlap)
if num_tiles_h >= 2:
# Subdivide vertically.
half_H = nearest_multiple(H // 2, min_block_size)
top = x[..., : half_H + ov, :]
bottom = x[..., half_H - ov :, :]
assert num_tiles_h % 2 == 0, f"num_tiles_h={num_tiles_h} must be even"
top = apply_tiled(fn, top, num_tiles_w, num_tiles_h // 2, overlap, min_block_size)
bottom = apply_tiled(fn, bottom, num_tiles_w, num_tiles_h // 2, overlap, min_block_size)
if top is None or bottom is None:
return None
# If `fn` changed the resolution, adjust the overlap.
resample_factor = top.size(-2) / (half_H + ov)
out_overlap = int(overlap * resample_factor)
return blend_vertical(top, bottom, out_overlap)
raise ValueError(f"Invalid num_tiles_w={num_tiles_w} and num_tiles_h={num_tiles_h}")
class DownsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks,
*,
temporal_reduction=2,
spatial_reduction=2,
**block_kwargs,
):
"""
Downsample block for the VAE encoder.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
num_res_blocks: Number of residual blocks.
temporal_reduction: Temporal reduction factor.
spatial_reduction: Spatial reduction factor.
"""
super().__init__()
layers = []
assert in_channels != out_channels
layers.append(
ContextParallelConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
# First layer in each block always uses replicate padding
padding_mode="replicate",
bias=block_kwargs["bias"],
)
)
for _ in range(num_res_blocks):
layers.append(block_fn(out_channels, **block_kwargs))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class Encoder(nn.Module):
def __init__(
self,
*,
in_channels: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
latent_dim: int,
temporal_reductions: List[int],
spatial_reductions: List[int],
prune_bottlenecks: List[bool],
has_attentions: List[bool],
affine: bool = True,
bias: bool = True,
input_is_conv_1x1: bool = False,
padding_mode: str,
):
super().__init__()
self.temporal_reductions = temporal_reductions
self.spatial_reductions = spatial_reductions
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.latent_dim = latent_dim
ch = [mult * base_channels for mult in channel_multipliers]
num_down_blocks = len(ch) - 1
assert len(num_res_blocks) == num_down_blocks + 2
layers = (
[nn.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
if not input_is_conv_1x1
else [Conv1x1(in_channels, ch[0])]
)
assert len(prune_bottlenecks) == num_down_blocks + 2
assert len(has_attentions) == num_down_blocks + 2
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
for _ in range(num_res_blocks[0]):
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
prune_bottlenecks = prune_bottlenecks[1:]
has_attentions = has_attentions[1:]
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
for i in range(num_down_blocks):
layer = DownsampleBlock(
ch[i],
ch[i + 1],
num_res_blocks=num_res_blocks[i + 1],
temporal_reduction=temporal_reductions[i],
spatial_reduction=spatial_reductions[i],
prune_bottleneck=prune_bottlenecks[i],
has_attention=has_attentions[i],
affine=affine,
bias=bias,
padding_mode=padding_mode,
)
layers.append(layer)
# Additional blocks.
for _ in range(num_res_blocks[-1]):
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
self.layers = nn.Sequential(*layers)
# Output layers.
self.output_norm = norm_fn(ch[-1])
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
@property
def temporal_downsample(self):
return math.prod(self.temporal_reductions)
@property
def spatial_downsample(self):
return math.prod(self.spatial_reductions)
def forward(self, x) -> LatentDistribution:
"""Forward pass.
Args:
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
Returns:
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
logvar: Shape: [B, latent_dim, t, h, w].
"""
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
x = self.layers(x)
x = self.output_norm(x)
x = F.silu(x, inplace=True)
x = self.output_proj(x)
means, logvar = torch.chunk(x, 2, dim=1)
assert means.ndim == 5
assert logvar.shape == means.shape
assert means.size(1) == self.latent_dim
return LatentDistribution(means, logvar)
def normalize_decoded_frames(samples):
samples = samples.float()
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
frames = rearrange(samples, "b c t h w -> b t h w c")
return frames
@torch.inference_mode()
def decode_latents_tiled_full(
decoder,
z,
*,
tile_sample_min_height: int = 240,
tile_sample_min_width: int = 424,
tile_overlap_factor_height: float = 0.1666,
tile_overlap_factor_width: float = 0.2,
auto_tile_size: bool = True,
frame_batch_size: int = 6,
):
B, C, T, H, W = z.shape
assert frame_batch_size <= T, f"frame_batch_size must be <= T, got {frame_batch_size} > {T}"
tile_sample_min_height = tile_sample_min_height if not auto_tile_size else H // 2 * 8
tile_sample_min_width = tile_sample_min_width if not auto_tile_size else W // 2 * 8
tile_latent_min_height = int(tile_sample_min_height / 8)
tile_latent_min_width = int(tile_sample_min_width / 8)
def blend_v(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
overlap_height = int(tile_latent_min_height * (1 - tile_overlap_factor_height))
overlap_width = int(tile_latent_min_width * (1 - tile_overlap_factor_width))
blend_extent_height = int(tile_sample_min_height * tile_overlap_factor_height)
blend_extent_width = int(tile_sample_min_width * tile_overlap_factor_width)
row_limit_height = tile_sample_min_height - blend_extent_height
row_limit_width = tile_sample_min_width - blend_extent_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
pbar = get_new_progress_bar(
desc="Decoding latent tiles",
total=len(range(0, H, overlap_height)) * len(range(0, W, overlap_width)) * len(range(T // frame_batch_size)),
)
rows = []
for i in range(0, H, overlap_height):
row = []
for j in range(0, W, overlap_width):
temporal = []
for k in range(T // frame_batch_size):
remaining_frames = T % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + tile_latent_min_height,
j : j + tile_latent_min_width,
]
tile = decoder(tile)
temporal.append(tile)
pbar.update(1)
row.append(torch.cat(temporal, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
return normalize_decoded_frames(torch.cat(result_rows, dim=3))
@torch.inference_mode()
def decode_latents_tiled_spatial(
decoder,
z,
*,
num_tiles_w: int,
num_tiles_h: int,
overlap: int = 0, # Number of pixel of overlap between adjacent tiles.
# Use a factor of 2 times the latent downsample factor.
min_block_size: int = 1, # Minimum number of pixels in each dimension when subdividing.
):
decoded = apply_tiled(decoder, z, num_tiles_w, num_tiles_h, overlap, min_block_size)
assert decoded is not None, f"Failed to decode latents with tiled spatial method"
return normalize_decoded_frames(decoded)
@torch.inference_mode()
def decode_latents(decoder, z):
cp_rank, cp_size = cp.get_cp_rank_size()
# import ipdb; ipdb.set_trace()
z = z.tensor_split(cp_size, dim=2)[cp_rank] # split along temporal dim
with torch.autocast("cuda", dtype=torch.bfloat16):
samples = decoder(z)
samples = cp_conv.gather_all_frames(samples)
return normalize_decoded_frames(samples)
@torch.inference_mode()
def encode_latents(encoder, x):
cp_rank, cp_size = cp.get_cp_rank_size()
# print(f"encode_latents: cp_rank: {cp_rank}, cp_size: {cp_size}, x.shape: {x.shape}")
x = x.tensor_split(cp_size, dim=2)[cp_rank] # split along temporal dim
# print(f"encode_latents: cp_rank: {cp_rank}, cp_size: {cp_size}, x.shape: {x.shape}")
with torch.autocast("cuda", dtype=torch.bfloat16):
z = encoder(x)
z = cp_conv.gather_all_frames(z.sample())
return z
# @torch.inference_mode()
# def encode_latents(encoder, x):
# # First gather the input across data parallel processes to ensure consistency
# if dist.is_initialized():
# world_size = dist.get_world_size()
# rank = dist.get_rank()
# gathered_x = [torch.zeros_like(x) for _ in range(world_size)]
# dist.all_gather(gathered_x, x)
# # Use the first process's data to ensure consistency
# x = gathered_x[0]
# # Now split along temporal dimension for context parallelism
# cp_rank, cp_size = cp.get_cp_rank_size()
# x = x.tensor_split(cp_size, dim=2)[cp_rank]
# with torch.autocast("cuda", dtype=torch.bfloat16):
# z = encoder(x)
# # Gather across CP ranks
# z = cp_conv.gather_all_frames(z.sample())
# # Redistribute the results back to data parallel processes
# if dist.is_initialized():
# # Split the result back according to the original batch size
# z_splits = z.chunk(world_size, dim=0)
# # Each process takes its corresponding split
# z = z_splits[rank]
# return z
if __name__ == "__main__":
import time
import torch
import torchvision
from einops import rearrange
from safetensors.torch import load_file
import os
# Enable TF32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Configuration matching the official test
config = dict(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate"
)
# Initialize encoder
encoder = Encoder(**config)
# Setup device and load weights
device = torch.device("cuda:0")
encoder = encoder.to(device, memory_format=torch.channels_last_3d)
# Load weights
weights_path = "/XYFS01/nudt_ljqu_1/Raphael/mochi-1-preview/encoder.safetensors"
if not os.path.exists(weights_path):
print(f"Error: Weights file not found at {weights_path}")
exit(1)
encoder.load_state_dict(load_file(weights_path))
encoder.eval()
# Create a test input (simulating video data)
B, C, T, H, W = 1, 3, 16, 256, 256
test_video = torch.randint(0, 255, (B, C, T, H, W), dtype=torch.uint8, device=device)
# Convert to float in [-1, 1] range
test_video = test_video.float() / 127.5 - 1.0
# Add Fourier features
test_video = add_fourier_features(test_video)
torch.cuda.synchronize()
# Encode video to latent
with torch.inference_mode():
with torch.autocast("cuda", dtype=torch.bfloat16):
print("\nTesting encoder...")
t0 = time.time()
latent_dist = encoder(test_video)
torch.cuda.synchronize()
encode_time = time.time() - t0
print(f"Time to encode: {encode_time:.2f}s")
# Print shapes and statistics
mean = latent_dist.mean
logvar = latent_dist.logvar
print(f"\nInput shape: {test_video.shape}")
print(f"Latent mean shape: {mean.shape}")
print(f"Latent logvar shape: {logvar.shape}")
# Print statistics
print("\nMean statistics:")
print(f"Min: {mean.min().item():.4f}")
print(f"Max: {mean.max().item():.4f}")
print(f"Mean: {mean.mean().item():.4f}")
print(f"Std: {mean.std().item():.4f}")
print("\nLogvar statistics:")
print(f"Min: {logvar.min().item():.4f}")
print(f"Max: {logvar.max().item():.4f}")
print(f"Mean: {logvar.mean().item():.4f}")
print(f"Std: {logvar.std().item():.4f}")
# Test sampling
print("\nTesting sampling from latent distribution...")
sampled = latent_dist.sample()
print(f"Sampled shape: {sampled.shape}")