WANGP1 / flux /modules /layers.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from flux.math import attention, rope
def get_linear_split_map():
hidden_size = 3072
split_linear_modules_map = {
"qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]},
"linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]}
}
return split_linear_modules_map
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
if k != None:
return self.key_norm(k).to(v)
else:
return self.query_norm(q).to(v)
# q = self.query_norm(q)
# k = self.key_norm(k)
# return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
raise Exception("not implemented")
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
def split_mlp(mlp, x, divide = 8):
x_shape = x.shape
x = x.view(-1, x.shape[-1])
chunk_size = int(x.shape[0]/divide)
chunk_size = int(x_shape[1]/divide)
x_chunks = torch.split(x, chunk_size)
for i, x_chunk in enumerate(x_chunks):
mlp_chunk = mlp[0](x_chunk)
mlp_chunk = mlp[1](mlp_chunk)
x_chunk[...] = mlp[2](mlp_chunk)
return x.reshape(x_shape)
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated.mul_(1 + img_mod1.scale)
img_modulated.add_(img_mod1.shift)
shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) )
img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2)
img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2)
img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2)
del img_modulated
img_q= self.img_attn.norm(img_q, None, img_v)
img_k = self.img_attn.norm(None, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated.mul_(1 + txt_mod1.scale)
txt_modulated.add_(txt_mod1.shift)
shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) )
txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2)
txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2)
txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2)
del txt_modulated
txt_q = self.txt_attn.norm(txt_q, None, txt_v)
txt_k = self.txt_attn.norm(None, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img blocks
img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate)
mod_img = self.img_norm2(img)
mod_img.mul_(1 + img_mod2.scale)
mod_img.add_(img_mod2.shift)
mod_img = split_mlp(self.img_mlp, mod_img)
# mod_img = self.img_mlp(mod_img)
img.addcmul_( mod_img, img_mod2.gate)
mod_img = None
# calculate the txt blocks
txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate)
txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = self.pre_norm(x)
x_mod.mul_(1 + mod.scale)
x_mod.add_(mod.shift)
##### More spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
# x_mod = (1 + mod.scale) * x + mod.shift
shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) )
q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2)
k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2)
v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2)
q = self.norm(q, None, v)
k = self.norm(None, k, v)
# compute attention
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
x_mod_shape = x_mod.shape
x_mod = x_mod.view(-1, x_mod.shape[-1])
chunk_size = int(x_mod_shape[1]/6)
x_chunks = torch.split(x_mod, chunk_size)
attn = attn.view(-1, attn.shape[-1])
attn_chunks =torch.split(attn, chunk_size)
for x_chunk, attn_chunk in zip(x_chunks, attn_chunks):
mlp_chunk = self.linear1_mlp(x_chunk)
mlp_chunk = self.mlp_act(mlp_chunk)
attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1)
del attn_chunk, mlp_chunk
x_chunk[...] = self.linear2(attn_mlp_chunk)
del attn_mlp_chunk
x_mod = x_mod.view(x_mod_shape)
x.addcmul_(x_mod, mod.gate)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x