WANGP1 / wan /multitalk /multitalk.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
import random
import os
import torch
import torch.distributed as dist
from PIL import Image
import subprocess
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn as nn
import wan
from wan.configs import SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
from wan.utils.utils import cache_image, cache_video, str2bool
# from wan.utils.multitalk_utils import save_video_ffmpeg
# from .kokoro import KPipeline
from transformers import Wav2Vec2FeatureExtractor
from .wav2vec2 import Wav2Vec2Model
import librosa
import pyloudnorm as pyln
import numpy as np
from einops import rearrange
import soundfile as sf
import re
import math
def custom_init(device, wav2vec):
audio_encoder = Wav2Vec2Model.from_pretrained(wav2vec, local_files_only=True).to(device)
audio_encoder.feature_extractor._freeze_parameters()
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec, local_files_only=True)
return wav2vec_feature_extractor, audio_encoder
def loudness_norm(audio_array, sr=16000, lufs=-23):
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(audio_array)
if abs(loudness) > 100:
return audio_array
normalized_audio = pyln.normalize.loudness(audio_array, loudness, lufs)
return normalized_audio
def get_embedding(speech_array, wav2vec_feature_extractor, audio_encoder, sr=16000, device='cpu', fps = 25):
audio_duration = len(speech_array) / sr
video_length = audio_duration * fps
# wav2vec_feature_extractor
audio_feature = np.squeeze(
wav2vec_feature_extractor(speech_array, sampling_rate=sr).input_values
)
audio_feature = torch.from_numpy(audio_feature).float().to(device=device)
audio_feature = audio_feature.unsqueeze(0)
# audio encoder
with torch.no_grad():
embeddings = audio_encoder(audio_feature, seq_len=int(video_length), output_hidden_states=True)
if len(embeddings) == 0:
print("Fail to extract audio embedding")
return None
audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
audio_emb = audio_emb.cpu().detach()
return audio_emb
def audio_prepare_single(audio_path, sample_rate=16000, duration = 0):
ext = os.path.splitext(audio_path)[1].lower()
if ext in ['.mp4', '.mov', '.avi', '.mkv']:
human_speech_array = extract_audio_from_video(audio_path, sample_rate)
return human_speech_array
else:
human_speech_array, sr = librosa.load(audio_path, duration=duration, sr=sample_rate)
human_speech_array = loudness_norm(human_speech_array, sr)
return human_speech_array
def audio_prepare_multi(left_path, right_path, audio_type = "add", sample_rate=16000, duration = 0, pad = 0):
if not (left_path==None or right_path==None):
human_speech_array1 = audio_prepare_single(left_path, duration = duration)
human_speech_array2 = audio_prepare_single(right_path, duration = duration)
elif left_path==None:
human_speech_array2 = audio_prepare_single(right_path, duration = duration)
human_speech_array1 = np.zeros(human_speech_array2.shape[0])
elif right_path==None:
human_speech_array1 = audio_prepare_single(left_path, duration = duration)
human_speech_array2 = np.zeros(human_speech_array1.shape[0])
if audio_type=='para':
new_human_speech1 = human_speech_array1
new_human_speech2 = human_speech_array2
elif audio_type=='add':
new_human_speech1 = np.concatenate([human_speech_array1[: human_speech_array1.shape[0]], np.zeros(human_speech_array2.shape[0])])
new_human_speech2 = np.concatenate([np.zeros(human_speech_array1.shape[0]), human_speech_array2[:human_speech_array2.shape[0]]])
#dont include the padding on the summed audio which is used to build the output audio track
sum_human_speechs = new_human_speech1 + new_human_speech2
if pad > 0:
new_human_speech1 = np.concatenate([np.zeros(pad), new_human_speech1])
new_human_speech2 = np.concatenate([np.zeros(pad), new_human_speech2])
return new_human_speech1, new_human_speech2, sum_human_speechs
def process_tts_single(text, save_dir, voice1):
s1_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
text, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s1_sentences = torch.concat(s1_sentences, dim=0)
save_path1 =f'{save_dir}/s1.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
s1, _ = librosa.load(save_path1, sr=16000)
return s1, save_path1
def process_tts_multi(text, save_dir, voice1, voice2):
pattern = r'\(s(\d+)\)\s*(.*?)(?=\s*\(s\d+\)|$)'
matches = re.findall(pattern, text, re.DOTALL)
s1_sentences = []
s2_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
for idx, (speaker, content) in enumerate(matches):
if speaker == '1':
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s2_sentences.append(torch.zeros_like(audios))
elif speaker == '2':
voice_tensor = torch.load(voice2, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s2_sentences.append(audios)
s1_sentences.append(torch.zeros_like(audios))
s1_sentences = torch.concat(s1_sentences, dim=0)
s2_sentences = torch.concat(s2_sentences, dim=0)
sum_sentences = s1_sentences + s2_sentences
save_path1 =f'{save_dir}/s1.wav'
save_path2 =f'{save_dir}/s2.wav'
save_path_sum = f'{save_dir}/sum.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
sf.write(save_path2, s2_sentences, 24000)
sf.write(save_path_sum, sum_sentences, 24000)
s1, _ = librosa.load(save_path1, sr=16000)
s2, _ = librosa.load(save_path2, sr=16000)
# sum, _ = librosa.load(save_path_sum, sr=16000)
return s1, s2, save_path_sum
def get_full_audio_embeddings(audio_guide1 = None, audio_guide2 = None, combination_type ="add", num_frames = 0, fps = 25, sr = 16000, padded_frames_for_embeddings = 0):
wav2vec_feature_extractor, audio_encoder= custom_init('cpu', "ckpts/chinese-wav2vec2-base")
# wav2vec_feature_extractor, audio_encoder= custom_init('cpu', "ckpts/wav2vec")
pad = int(padded_frames_for_embeddings/ fps * sr)
new_human_speech1, new_human_speech2, sum_human_speechs = audio_prepare_multi(audio_guide1, audio_guide2, combination_type, duration= num_frames / fps, pad = pad)
audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder, sr=sr, fps= fps)
audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder, sr=sr, fps= fps)
full_audio_embs = []
if audio_guide1 != None: full_audio_embs.append(audio_embedding_1)
# if audio_guide1 != None: full_audio_embs.append(audio_embedding_1)
if audio_guide2 != None: full_audio_embs.append(audio_embedding_2)
if audio_guide2 == None: sum_human_speechs = None
return full_audio_embs, sum_human_speechs
def get_window_audio_embeddings(full_audio_embs, audio_start_idx=0, clip_length = 81, vae_scale = 4, audio_window = 5):
if full_audio_embs == None: return None
HUMAN_NUMBER = len(full_audio_embs)
audio_end_idx = audio_start_idx + clip_length
indices = (torch.arange(2 * 2 + 1) - 2) * 1
audio_embs = []
# split audio with window size
for human_idx in range(HUMAN_NUMBER):
center_indices = torch.arange(
audio_start_idx,
audio_end_idx,
1
).unsqueeze(
1
) + indices.unsqueeze(0)
center_indices = torch.clamp(center_indices, min=0, max=full_audio_embs[human_idx].shape[0]-1).to(full_audio_embs[human_idx].device)
audio_emb = full_audio_embs[human_idx][center_indices][None,...] #.to(self.device)
audio_embs.append(audio_emb)
audio_embs = torch.concat(audio_embs, dim=0) #.to(self.param_dtype)
# audio_cond = audio.to(device=x.device, dtype=x.dtype)
audio_cond = audio_embs
first_frame_audio_emb_s = audio_cond[:, :1, ...]
latter_frame_audio_emb = audio_cond[:, 1:, ...]
latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=vae_scale)
middle_index = audio_window // 2
latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...]
latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...]
latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...]
latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_frame_audio_emb_s = torch.concat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2)
return [first_frame_audio_emb_s, latter_frame_audio_emb_s]
def resize_and_centercrop(cond_image, target_size):
"""
Resize image or tensor to the target size without padding.
"""
# Get the original size
if isinstance(cond_image, torch.Tensor):
_, orig_h, orig_w = cond_image.shape
else:
orig_h, orig_w = cond_image.height, cond_image.width
target_h, target_w = target_size
# Calculate the scaling factor for resizing
scale_h = target_h / orig_h
scale_w = target_w / orig_w
# Compute the final size
scale = max(scale_h, scale_w)
final_h = math.ceil(scale * orig_h)
final_w = math.ceil(scale * orig_w)
# Resize
if isinstance(cond_image, torch.Tensor):
if len(cond_image.shape) == 3:
cond_image = cond_image[None]
resized_tensor = nn.functional.interpolate(cond_image, size=(final_h, final_w), mode='nearest').contiguous()
# crop
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor.squeeze(0)
else:
resized_image = cond_image.resize((final_w, final_h), resample=Image.BILINEAR)
resized_image = np.array(resized_image)
# tensor and crop
resized_tensor = torch.from_numpy(resized_image)[None, ...].permute(0, 3, 1, 2).contiguous()
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor[:, :, None, :, :]
return cropped_tensor
def timestep_transform(
t,
shift=5.0,
num_timesteps=1000,
):
t = t / num_timesteps
# shift the timestep based on ratio
new_t = shift * t / (1 + (shift - 1) * t)
new_t = new_t * num_timesteps
return new_t
def parse_speakers_locations(speakers_locations):
bbox = {}
if speakers_locations is None or len(speakers_locations) == 0:
return None, ""
speakers = speakers_locations.split(" ")
if len(speakers) !=2:
error= "Two speakers locations should be defined"
return "", error
for i, speaker in enumerate(speakers):
location = speaker.strip().split(":")
if len(location) not in (2,4):
error = f"Invalid Speaker Location '{location}'. A Speaker Location should be defined in the format Left:Right or usuing a BBox Left:Top:Right:Bottom"
return "", error
try:
good = False
location_float = [ float(val) for val in location]
good = all( 0 <= val <= 100 for val in location_float)
except:
pass
if not good:
error = f"Invalid Speaker Location '{location}'. Each number should be between 0 and 100."
return "", error
if len(location_float) == 2:
location_float = [location_float[0], 0, location_float[1], 100]
bbox[f"human{i}"] = location_float
return bbox, ""
# construct human mask
def get_target_masks(HUMAN_NUMBER, lat_h, lat_w, src_h, src_w, face_scale = 0.05, bbox = None):
human_masks = []
if HUMAN_NUMBER==1:
background_mask = torch.ones([src_h, src_w])
human_mask1 = torch.ones([src_h, src_w])
human_mask2 = torch.ones([src_h, src_w])
human_masks = [human_mask1, human_mask2, background_mask]
elif HUMAN_NUMBER==2:
if bbox != None:
assert len(bbox) == HUMAN_NUMBER, f"The number of target bbox should be the same with cond_audio"
background_mask = torch.zeros([src_h, src_w])
for _, person_bbox in bbox.items():
y_min, x_min, y_max, x_max = person_bbox
x_min, y_min, x_max, y_max = max(x_min,5), max(y_min, 5), min(x_max,95), min(y_max,95)
x_min, y_min, x_max, y_max = int(src_h * x_min / 100), int(src_w * y_min / 100), int(src_h * x_max / 100), int(src_w * y_max / 100)
human_mask = torch.zeros([src_h, src_w])
human_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
background_mask += human_mask
human_masks.append(human_mask)
else:
x_min, x_max = int(src_h * face_scale), int(src_h * (1 - face_scale))
background_mask = torch.zeros([src_h, src_w])
background_mask = torch.zeros([src_h, src_w])
human_mask1 = torch.zeros([src_h, src_w])
human_mask2 = torch.zeros([src_h, src_w])
lefty_min, lefty_max = int((src_w//2) * face_scale), int((src_w//2) * (1 - face_scale))
righty_min, righty_max = int((src_w//2) * face_scale + (src_w//2)), int((src_w//2) * (1 - face_scale) + (src_w//2))
human_mask1[x_min:x_max, lefty_min:lefty_max] = 1
human_mask2[x_min:x_max, righty_min:righty_max] = 1
background_mask += human_mask1
background_mask += human_mask2
human_masks = [human_mask1, human_mask2]
background_mask = torch.where(background_mask > 0, torch.tensor(0), torch.tensor(1))
human_masks.append(background_mask)
# toto = Image.fromarray(human_masks[2].mul_(255).unsqueeze(-1).repeat(1,1,3).to(torch.uint8).cpu().numpy())
ref_target_masks = torch.stack(human_masks, dim=0) #.to(self.device)
# resize and centercrop for ref_target_masks
# ref_target_masks = resize_and_centercrop(ref_target_masks, (target_h, target_w))
N_h, N_w = lat_h // 2, lat_w // 2
token_ref_target_masks = F.interpolate(ref_target_masks.unsqueeze(0), size=(N_h, N_w), mode='nearest').squeeze()
token_ref_target_masks = (token_ref_target_masks > 0)
token_ref_target_masks = token_ref_target_masks.float() #.to(self.device)
token_ref_target_masks = token_ref_target_masks.view(token_ref_target_masks.shape[0], -1)
return token_ref_target_masks