Spaces:
Paused
Paused
# PyTorch 2.8 (temporary hack) | |
import os | |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"') | |
from huggingface_hub import HfApi, upload_file | |
import os | |
import uuid | |
import subprocess | |
import tempfile | |
import logging | |
import shutil | |
import os | |
from huggingface_hub import HfApi, upload_file | |
from datetime import datetime | |
import uuid | |
# Actual demo code | |
import spaces | |
import torch | |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline | |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
from diffusers.utils.export_utils import export_to_video | |
import gradio as gr | |
import tempfile | |
import numpy as np | |
from PIL import Image | |
import random | |
import gc | |
from optimization import optimize_pipeline_ | |
from huggingface_hub import hf_hub_download | |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" | |
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/wan22lora-text-img-video-analysis") | |
from huggingface_hub import HfApi, upload_file | |
import os | |
import uuid | |
import os | |
import uuid | |
import logging | |
from datetime import datetime | |
def upscale_and_upload_4k(input_video_path: str, input_image, summary_text: str) -> str: | |
""" | |
Upscale a video to 4K and upload it to Hugging Face Hub along with the input image and a text summary. | |
Args: | |
input_video_path (str): Path to the original video. | |
input_image (PIL.Image.Image or path-like): Input image to upload alongside the video. | |
summary_text (str): Text summary or prompt to upload alongside the video. | |
Returns: | |
str: Hugging Face folder path where the video, image, and summary were uploaded. | |
""" | |
logging.info(f"Upscaling video to 4K for upload: {input_video_path}") | |
# --- Upscale video --- | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled: | |
upscaled_path = tmp_upscaled.name | |
cmd = [ | |
"ffmpeg", | |
"-i", input_video_path, | |
"-vf", "scale=3840:2160:flags=lanczos", | |
"-c:v", "libx264", | |
"-crf", "18", | |
"-preset", "slow", | |
"-y", | |
upscaled_path, | |
] | |
try: | |
subprocess.run(cmd, check=True, capture_output=True) | |
logging.info(f"✅ Upscaled video created at: {upscaled_path}") | |
except subprocess.CalledProcessError as e: | |
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}") | |
raise | |
# --- Create HF folder --- | |
today_str = datetime.now().strftime("%Y-%m-%d") | |
unique_subfolder = f"upload_{uuid.uuid4().hex[:8]}" | |
hf_folder = f"{today_str}-WAN-I2V/{unique_subfolder}" | |
# --- Upload video --- | |
video_filename = os.path.basename(input_video_path) | |
video_hf_path = f"{hf_folder}/{video_filename}" | |
upload_file( | |
path_or_fileobj=upscaled_path, | |
path_in_repo=video_hf_path, | |
repo_id=HF_MODEL, | |
repo_type="model", | |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"), | |
) | |
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}") | |
# --- Upload input image --- | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img: | |
if isinstance(input_image, str): | |
import shutil | |
shutil.copy(input_image, tmp_img.name) | |
else: | |
input_image.save(tmp_img.name, format="PNG") | |
tmp_img_path = tmp_img.name | |
image_hf_path = f"{hf_folder}/input_image.png" | |
upload_file( | |
path_or_fileobj=tmp_img_path, | |
path_in_repo=image_hf_path, | |
repo_id=HF_MODEL, | |
repo_type="model", | |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"), | |
) | |
logging.info(f"✅ Uploaded input image to HF: {image_hf_path}") | |
# --- Upload summary text --- | |
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name | |
with open(summary_file, "w", encoding="utf-8") as f: | |
f.write(summary_text) | |
summary_hf_path = f"{hf_folder}/summary.txt" | |
upload_file( | |
path_or_fileobj=summary_file, | |
path_in_repo=summary_hf_path, | |
repo_id=HF_MODEL, | |
repo_type="model", | |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"), | |
) | |
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}") | |
# --- Cleanup temporary files --- | |
os.remove(upscaled_path) | |
os.remove(tmp_img_path) | |
os.remove(summary_file) | |
return hf_folder | |
LORA_REPO_ID = "rahul7star/wan2.2Lora" | |
LORA_SETS = { | |
"NF": { | |
"high_noise": {"file": "DR34ML4Y_I2V_14B_HIGH.safetensors", "adapter_name": "nf_high"}, | |
"low_noise": {"file": "DR34ML4Y_I2V_14B_LOW.safetensors", "adapter_name": "nf_low"} | |
}, | |
"BP": { | |
"high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"}, | |
"low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"} | |
}, | |
"Py-v1": { | |
"high_noise": {"file": "wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_high"}, | |
"low_noise": {"file": "wan2.2_i2v_lownoise_pov_missionary_v1.0.safetensors", "adapter_name": "py_low"} | |
} | |
} | |
LANDSCAPE_WIDTH = 832 | |
LANDSCAPE_HEIGHT = 576 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1) | |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1) | |
pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, | |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
subfolder='transformer', | |
torch_dtype=torch.bfloat16, | |
device_map='cuda', | |
), | |
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
subfolder='transformer_2', | |
torch_dtype=torch.bfloat16, | |
device_map='cuda', | |
), | |
torch_dtype=torch.bfloat16, | |
).to('cuda') | |
optimize_pipeline_(pipe, | |
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)), | |
prompt='prompt', | |
height=LANDSCAPE_HEIGHT, | |
width=LANDSCAPE_WIDTH, | |
num_frames=MAX_FRAMES_MODEL, | |
) | |
for name, lora_set in LORA_SETS.items(): | |
print(f"---LoRA 集合: {name} ---") | |
# 加载 High Noise | |
high_noise_config = lora_set["high_noise"] | |
print(f"High Noise: {high_noise_config['file']}...") | |
pipe.load_lora_weights(LORA_REPO_ID, weight_name=high_noise_config['file'], adapter_name=high_noise_config['adapter_name']) | |
print("High Noise LoRA 加载完成。") | |
# 加载 Low Noise | |
low_noise_config = lora_set["low_noise"] | |
print(f" Low Noise: {low_noise_config['file']}...") | |
pipe.load_lora_weights(LORA_REPO_ID, weight_name=low_noise_config['file'], adapter_name=low_noise_config['adapter_name']) | |
print("Low Noise LoRA ") | |
print("。") | |
for i in range(3): | |
gc.collect() | |
torch.cuda.synchronize() | |
torch.cuda.empty_cache() | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" | |
def resize_image(image: Image.Image) -> Image.Image: | |
if image.height > image.width: | |
transposed = image.transpose(Image.Transpose.ROTATE_90) | |
resized = resize_image_landscape(transposed) | |
return resized.transpose(Image.Transpose.ROTATE_270) | |
return resize_image_landscape(image) | |
def resize_image_landscape(image: Image.Image) -> Image.Image: | |
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT | |
width, height = image.size | |
in_aspect = width / height | |
if in_aspect > target_aspect: | |
new_width = round(height * target_aspect) | |
left = (width - new_width) // 2 | |
image = image.crop((left, 0, left + new_width, height)) | |
else: | |
new_height = round(width / target_aspect) | |
top = (height - new_height) // 2 | |
image = image.crop((0, top, width, top + new_height)) | |
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS) | |
def get_duration( | |
input_image, | |
prompt, | |
steps, | |
negative_prompt, | |
duration_seconds, | |
guidance_scale, | |
guidance_scale_2, | |
seed, | |
randomize_seed, | |
selected_loras, | |
progress, | |
): | |
return int(steps) * 15 | |
def generate_video( | |
input_image, | |
prompt, | |
steps = 4, | |
negative_prompt=default_negative_prompt, | |
duration_seconds = MAX_DURATION, | |
guidance_scale = 1, | |
guidance_scale_2 = 1, | |
seed = 42, | |
randomize_seed = False, | |
selected_loras = [], | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
print("potmpt is ") | |
print(prompt) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = resize_image(input_image) | |
num_inference_steps = int(steps) | |
switch_step = num_inference_steps // 2 | |
class LoraSwitcher: | |
def __init__(self, selected_lora_names): | |
self.switched = False | |
self.high_noise_adapters = [] | |
self.low_noise_adapters = [] | |
if selected_lora_names: | |
for name in selected_lora_names: | |
if name in LORA_SETS: | |
self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"]) | |
self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"]) | |
def __call__(self, pipe, step_index, timestep, callback_kwargs): | |
# LoRA 状态 | |
if step_index == 0: | |
self.switched = False | |
# LoRA,则激活 High Noise 版本 | |
if self.high_noise_adapters: | |
print(f"激活 High Noise LoRA: {self.high_noise_adapters}") | |
pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0] * len(self.high_noise_adapters)) | |
# 🔥 同时 fuse_lora | |
try: | |
print(f"Fuse High Noise LoRA: {self.high_noise_adapters}") | |
pipe.fuse_lora() | |
except Exception as e: | |
print(f"Fuse High Noise LoRA 失败: {e}") | |
# LoRA,则通过将权重设为0来禁用任何可能残留的 LoRA | |
elif pipe.get_active_adapters(): | |
active_adapters = pipe.get_active_adapters() | |
print(f"未选择 LoRA,通过设置权重为0来禁用残留的 LoRA: {active_adapters}") | |
pipe.set_adapters(active_adapters, adapter_weights=[0.0] * len(active_adapters)) | |
#Low Noise LoRA(仅当有 LoRA 被选择时) | |
if self.low_noise_adapters and step_index >= switch_step and not self.switched: | |
print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}") | |
pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0] * len(self.low_noise_adapters)) | |
try: | |
print(f"Fuse Low Noise LoRA: {self.low_noise_adapters}") | |
pipe.fuse_lora() | |
except Exception as e: | |
print(f"Fuse Low Noise LoRA 失败: {e}") | |
self.switched = True | |
return callback_kwargs | |
lora_switcher_callback = LoraSwitcher(selected_loras) | |
output_frames_list = pipe( | |
image=resized_image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=resized_image.height, | |
width=resized_image.width, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
guidance_scale_2=float(guidance_scale_2), | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator(device="cuda").manual_seed(current_seed), | |
callback_on_step_end=lora_switcher_callback, | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
#upscale_and_upload_4k(video_path, input_image, prompt) | |
return video_path, current_seed | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA") | |
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️") | |
with gr.Row(): # ensures columns align in height | |
with gr.Column(): | |
input_image_component = gr.Image( | |
type="pil", | |
label="Input Image (auto-resized to target H/W)", | |
interactive=True, | |
elem_classes=["flex-image"] | |
) | |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
duration_seconds_input = gr.Slider( | |
minimum=MIN_DURATION, | |
maximum=MAX_DURATION, | |
step=0.1, | |
value=3.5, | |
label="Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
lora_selection_checkbox = gr.CheckboxGroup( | |
choices=list(LORA_SETS.keys()), | |
label="选择要应用的 LoRA (可多选)", | |
info="选择一个或多个 LoRA 风格进行组合。" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage") | |
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage") | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False, elem_classes=["stretch-video"]) | |
ui_inputs = [ | |
input_image_component, prompt_input, steps_slider, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox, | |
lora_selection_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
if __name__ == "__main__": | |
demo.queue().launch() | |